我们首先发现有如下性质:

我们不妨先随机定向边,那么我们发现无论我们如何翻转边。

都会对其两端的点,造成 \(2 / 4\) 的影响,所以我们发现如果一个点其和他相连的所有边权和为偶数,则我们不能调整其为好点。

那么我们自然的思考,是否能够构造一种方案使得所有边权和为奇数的都可以成为好点。

我们下列先给出一个方案再进行一个证明。

我们对所有的奇度点都与一个虚点相连一条边权为 \(1\) 的虚边。

我们知道一条边会同时改变两点的度数奇偶情况,即奇度数点为偶数。

所以我们操作之后一定所有点都是偶数,那这图是一个欧拉回路。

考虑我们在进行欧拉回路的遍历时,我们首先满足让出边让入边的边权相等,否则使用另一边。

考虑对边权为偶数的我们可以任意定向,那我们不进行考虑。

那么我们考虑边权为奇数的,那么有两种情况。

一:奇数条边权为 \(1\) 的边,奇数条的边权边权为 \(2\) 的边。

此种情况,我们按我们的操作的一定会最后只会抵消到只剩一条边权为 \(1\) 的和一条边权为 \(2\) 的边。

那么其为好点。

一:奇数条边权为 \(1\) 的边,偶数条的边权边权为 \(2\) 的边。

此种情况,我们按我们的操作的一定会最后只会抵消到只剩一条边权为 \(1\)。

那么其为好点。

所以我们只要按照这种操作即可使得所有边权和的奇数的点都是好点。

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<list>
#define ll lonng long
#define N 600005 bool begin; int n,m; int to[N];
int from[N]; int sum[N]; int fans,ans[N]; int vis[N]; int cnt[N]; std::vector<int>Q[N][3];//边权为1,边权为2
int head[N][3]; int dfn[N]; bool end; inline void dfs(int u,int now){
// std::cout<<u<<" "<<now<<std::endl;
// std::cout<<"rest"<<head[u][now]<<" "<<head[u][3 - now]<<std::endl;
int fnow = now;
while(!(Q[u][now].size() <= head[u][now] && Q[u][3 - now].size() <= head[u][3 - now])){
dfn[u] = 1;
while(head[u][now] < Q[u][now].size() && vis[Q[u][now][head[u][now]]])
head[u][now] ++;
while(head[u][3 - now] < Q[u][3 - now].size() && vis[Q[u][3 - now][head[u][3 - now]]])
head[u][3 - now] ++;
if(Q[u][now].size() != head[u][now]){
ans[Q[u][now][head[u][now]]] = (u == from[Q[u][now][head[u][now]]]) + 1;
vis[Q[u][now][head[u][now]]] = 1;
// std::cout<<"("<<u<<"->"<<" "<<(to[Q[u][now][head[u][now]]] - u)<<")"<<std::endl;
// std::cout<<Q[u][now].front()<<std::endl;
dfs(to[Q[u][now][head[u][now]]] - u,now);
head[u][now] ++ ;
}else{
now = 3 - now;
if(Q[u][now].size() != head[u][now]){
ans[Q[u][now][head[u][now]]] = (u == from[Q[u][now][head[u][now]]]) + 1;
vis[Q[u][now][head[u][now]]] = 1;
// std::cout<<"("<<u<<"->"<<" "<<(to[Q[u][now][head[u][now]]] - u)<<")"<<std::endl;
// std::cout<<Q[u][now].front()<<std::endl;
dfs(to[Q[u][now][head[u][now]]] - u,now);
head[u][now] ++ ;
}
}
now = fnow;
}
return ;
} int main(){
// std::cout<<(&end - &begin) / 1024 / 1024<<std::endl;
scanf("%d%d",&n,&m);
for(int i = 1;i <= m;++i){
int x,y,p;
scanf("%d%d%d",&x,&y,&p);
to[i] = x + y;
cnt[x] ++ ;
cnt[y] ++ ;
from[i] = x;
sum[x] += p;
sum[y] += p;
Q[x][p].push_back(i);
Q[y][p].push_back(i);
}
int mcnt = m;
for(int i = 1;i <= n;++i){
if(sum[i] & 1)
fans ++ ;
if(cnt[i] & 1){
int x = n + 1;
int y = i;
int p = 1;
to[++mcnt] = x + y;
from[mcnt] = x;
Q[x][p].push_back(mcnt);
Q[y][p].push_back(mcnt);
}
}
for(int i = 1;i <= n + 1;++i)
if(!dfn[i])
dfs(i,1);
std::cout<<fans<<std::endl;
for(int i = 1;i <= m;++i)
std::cout<<(ans[i]);
return 0;
}

CF1610F F. Mashtali: a Space Oddysey的更多相关文章

  1. 列表屏幕(List Screen)

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  2. ES5基础之正则表达式02:范围类、预定义类和边界字符

    1.范围类 //元字符 /* * 正则表达式由两种基本字符类型组成 * 1.原义文本字符:例如123abc * 2.元字符:元字符是在正则表达式中有特殊含义的非字母字符 */ //常见特殊符号:. * ...

  3. mac 系统通用快捷键(mac 下的应用多数会往这些标准看齐)(转:http://yang3wei.github.io/blog/2013/02/08/chen-ni-yu-mac-chen-ni-yu-xcode/)

    command + w: 关闭当前窗口 command + q: 退出程序 (Google Chrome 有点奇葩,按下之后还需要hold 那么一小会儿才能退出) command + m: 最小化当前 ...

  4. 获取windows磁盘的可用空间函数

    <?php /* *获取某个磁盘的剩余空间 *$param 关联数组,下标是哪个盘,单位,可以是B,KB,MB,GB *可以设置获取多个磁盘,例如:array('C'=>'KB','D'= ...

  5. web前端开发工具HBuilder使用技巧之快捷键

    /*注:本教程针对HBuilder5.0.0,制作日期2014-12-31*/ 创建HTML结构: h 8 (敲h激活代码块列表,按8选择第8个项目,即HTML代码块,或者敲h t Enter) 中途 ...

  6. Half Wavelength Dipole Antenna

    Reference : 1. wikipedia The dipole antenna is the simplest and most widely used class of antenna.It ...

  7. ocp 1Z0-042 61-120题解析

    61. View the Exhibit.Which statement regarding the dept and emp tables is true?A) When you delete a ...

  8. hbuilder工具快捷键 http://www.qq210.com/shoutu/android

    http://www.qq210.com/shoutu/android 创建HTML结构: h 8 (敲h激活代码块列表,按8选择第8个项目,即HTML代码块,或者敲h t Enter)中途换行: ' ...

  9. windbg命令详解

      DLL 该扩展仅在内核模式下使用,即使它是在Ext.dll中的. Windows NT 4.0 Ext.dll Windows 2000 Ext.dll Windows XP和之后 Ext.dll ...

随机推荐

  1. springboot事务的传播行为和隔离级别

    springboot事务的传播行为和隔离级别 在springboot中事务的传播行为和隔离级别都是在TransactionDefinition这个接口中定义的 传播行为定义了7种,分别用0-6来表示 ...

  2. SpringBoot打包到docker(idea+传统方式)

    作者:故事我忘了¢个人微信公众号:程序猿的月光宝盒 目录 1. 方式1.通过idea 远程发布 1.1 修改docker.service文件 1. 进入服务器 2. 修改ExecStart行为下面内容 ...

  3. Manacher(马拉车)

    Able was I ere I saw Elba.     ----Napoléon Bonaparte(拿破仑) 一.回文串&回文子串   这个很好理解. 如果一个字符串正着读和反着读是一 ...

  4. stm32学习心得体会

    stm32作为现在嵌入式物联网单片机行业中经常要用多的技术,相信大家都有所接触,今天这篇就给大家详细的分析下有关于stm32的出口,还不是很清楚的朋友要注意看看了哦,在最后还会为大家分享有些关于stm ...

  5. spring-cloud-square开发实战(三种类型全覆盖)

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 前文<五分钟搞懂spring-clou ...

  6. Python 类似 SyntaxError: Non-ASCII character '\xc3' in file

    Python 类似 SyntaxError: Non-ASCII character '\xc3' in file 产生这个问题的原因: python 的默认编码文件是ACSII,而编辑器将文件保存为 ...

  7. PHP笔记3__简易计算器

    <?php header("Content-type: text/html; charset=utf-8"); error_reporting(E_ALL & ~E_ ...

  8. vim 打开文件的常用操作

    一.如果在终端中开没有打开vim,可以: 横向分割显示: $ vim -o filename1 filename2 纵向分割显示: $ vim -O filename1 filename2 二.如果已 ...

  9. AC-DCN ESXi

    传统IT架构中的网络,根据业务需求部署上线以后,如果业务需求发生变动,重新修改相应网络设备(路由器.交换机.防火墙)上的配置是一件非常繁琐的事情.在互联网/移动互联网瞬息万变的业务环境下,网络的高稳定 ...

  10. 五(一)、spring 声明式事务注解配置

    一.事务概述: 事务就是一系列的动作, 它们被当做一个单独的工作单元. 这些动作要么全部完成, 要么全部不起作用:比如 用户购买图书:购买动作之前需要确认 ①图书的数量是否足够:②用户账号余额是否足够 ...