pandas补充(其二)与matplotlib补充
今日内容概要
- pandas补充知识(2)
- matplotlib补充知识
今日内容详细
pandas补充
数据汇总
# 数据透视表
pd.pivot_table(data,values-None,index=None,columns=None,aggfunc='mean',fill_value=None,margins=False,dropna=True,margins_name='All')
data:指定需要构造透视表的数据集
values:指定需要拉入“数值”框的字段列表
index:指定需要拉入“行标签”框的字段列表
columns:指定需要拉入“列标签”框的字段列表
aggfunc:指定数值的统计函数,默认为统计均值,也可以指定
numpy模块中的其他统计函数
fill_value:指定一个标量,用于填充缺失值
margins:bool类型参数,是否需要显示行或列的总计值,默认为False
dropna:bool类型参数,是否需要删除整列为缺失值的字段,默认为True
margins_name:指定行或列的总计名称,默认为All
data06 = pd.read_csv(r'diamonds.csv')
data06.head()
pd.pivot_table(data06, index = 'color', values='price', aggfunc='mean')
pd.pivot_table(data06, index = 'color', columns='clarity', values='price', aggfunc='size')
分组与聚合
import numpy as np
# 通过groupby方法,指定分组变量
grouped = data06.groupby(by = ['color','cut'])
# 对分组变量进行统计汇总
result = grouped.aggregate({'color':np.size, 'carat':np.min,
'price':np.mean, 'table':np.max})
# 调整变量名的顺序
result = pd.DataFrame(result, columns=['color','carat','price','table'])
# 数据集重命名
result.rename(columns={'color':'counts',
'carat':'min_weight',
'price':'avg_price',
'table':'max_table'},
inplace=True)
练习题
# 分析NBA各球队冠军次数及球员FMVP次数
res = pd.read_html('https://baike.baidu.com/item/NBA%E6%80%BB%E5%86%A0%E5%86%9B/2173192?fr=aladdin') ### 返回的是一个列表 列表中是当前页面的所有表格数据
type(res)
res
# 获取有效数据
champion = res[0]
champion
# 针对冠军字段分组
champion.groupby('冠军').groups
# 获取分组之后的各分组大小
champion.groupby('冠军').size()
# 获取各组冠军次数
champion.groupby('冠军').size().sort_values(ascending=False) # 升序
# 分组字段可以一次性取多个
champion.groupby(['冠军', 'FMVP']).size()
数据的合并
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None)
objs:指定需要合并的对象,可以是序列、数据框或面板数据构成的列表
axis:指定数据合并的轴,默认为0,表示合并多个数据的行,如果为1,就表示合并多个数据的列
join:指定合并的方式,默认为outer,表示合并所有数据,如果改为inner,表示合并公共部分的数据
join_axes:合并数据后,指定保留的数据轴
ignore_index:bool类型的参数,表示是否忽略原数据集的索引,默认为False,如果设为True,就表示忽略原索引并生成新索引
keys:为合并后的数据添加新索引,用于区分各个数据部分
# 构造数据集df1和df2
df1 = pd.DataFrame({
'name':['张三','李四','王二'],
'age':[21,25,22],
'gender':['男','女','男']}
)
df2 = pd.DataFrame({
'name':['丁一','赵五'],
'age':[23,22],
'gender':['女','女']}
)
# 数据集的纵向合并
pd.concat([df1,df2] , keys = ['df1','df2']) # 加keys参数可以在合并之后看到数据来源
pd.concat([df1,df2] , keys = ['df1','df2']).reset_index()
pd.concat([df1,df2] , keys = ['df1','df2']).reset_index().drop(labels ='level_1', axis = 1).rename(columns = {'level_0':'Class'})
# 如果df2数据集中的“姓名变量为Name”
df2 = pd.DataFrame({
'Name':['丁一','赵五'],
'age':[23,22],
'gender':['女','女']}
)
# 数据集的纵向合并
pd.concat([df1,df2])
# concat行合并,数据源的变量名称完全相同(变量名顺序没有要求)
数据的连接
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'))
"""
emp
id name age dep_id
dep
id dep_name dep_desc
select * from emp inner join dep on emp.dep_id = dep.id;
"""
left:指定需要连接的主表
right:指定需要连接的辅表
how:指定连接方式,默认为inner内连,还有其他选项,如左连left、右连right和外连outer(union)
on:指定连接两张表的共同字段
left_on:指定主表中需要连接的共同字段
right_on:指定辅表中需要连接的共同字段
left_index:bool类型参数,是否将主表中的行索引用作表连接的共同字段,默认为False
right_index:bool类型参数,是否将辅表中的行索引用作表连接的共同字段,默认为False
sort:bool类型参数,是否对连接后的数据按照共同字段排序,默认为False
suffixes:如果数据连接的结果中存在重叠的变量名,则使用各自的前缀进行区分
# 构造数据集
df3 = pd.DataFrame({
'id':[1,2,3,4,5],
'name':['张三','李四','王二','丁一','赵五'],
'age':[27,24,25,23,25],
'gender':['男','男','男','女','女']})
df4 = pd.DataFrame({
'Id':[1,2,2,4,4,4,5],
'score':[83,81,87,75,86,74,88],
'kemu':['科目1','科目1','科目2','科目1','科目2','科目3','科目1']})
df5 = pd.DataFrame({
'id':[1,3,5],
'name':['张三','王二','赵五'],
'income':[13500,18000,15000]})
# 首先df3和df4连接
merge1 = pd.merge(left = df3,
right = df4,
how = 'left',
left_on='id',
right_on='Id')
# 再将连接结果与df5连接
merge2 = pd.merge(left = merge1,
right = df5,
how = 'left')
matplotlib补充
简介
是一个强大的python绘图和数据可视化工具包,数据可视化也是我们数据分析重要环节之一,可以帮助我们分析出很多价值信息,也是数据分析的最后一个可视化阶段
下载
# python纯开发环境下
pip3 install matplotlib
# anaconda环境下
conda install matplotlib
'''anaconda已经自动帮助我们下载好了数据分析相关的模块,其实无需我们再下载'''
导入
import matplotlib.pyplot as plt
课程目标
1. 离散型数据的可视化
2. 连续性数据的可视化
3. 关系型数据的可视化
4. 多图形的组合
饼图的绘制
饼图属于最传统的统计图形之一,几乎随处可见,例如大型公司的屏幕墙、各种年度论坛的演示稿以及各大媒体发布的数据统计报告等;
饼图是将一个圆分割成不同大小的楔(扇)形,而圆中的每一个楔形代表了不同的类别值,通常根据楔形的面积大小来判断类别值的差异;
pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, labeldistance=1.1)
x:指定绘图的数据
explode:指定饼图某些部分的突出显示,即呈现爆炸式
labels:为饼图添加标签说明,类似于图例说明
colors:指定饼图的填充色
autopct:自动添加百分比显示,可以采用格式化的方法显示
pctdistance:设置百分比标签与圆心的距离
labeldistance:设置各扇形标签(图例)与圆心的距离
# 导入第三方模块
import matplotlib.pyplot as plt
# 解决中文乱码情况
plt.rcParams['font.sans-serif'] = ['SimHei']
# 构造数据
edu = [0.2515,0.3724,0.3336,0.0368,0.0057]
labels = ['中专','大专','本科','硕士','其他']
explode = [0,0.1,0,0,0]
# 绘制饼图 plt.axes(aspect='equal') # 如果python版本较低可能是扁的需要加该代码
plt.pie(x = edu, # 绘图数据
labels=labels, # 添加教育水平标签
autopct='%.1f%%', # 设置百分比的格式,这里保留一位小数
explode = explode
)
# 显示图形
plt.show()
条形图的绘制
虽然饼图可以很好地表达离散型变量在各水平上的差异,但其不擅长对比差异不大或水平值过多的离散型变量,因为饼图是通过各扇形面积的大小来比价差异的,面积的比较有时并不直观;对于条形图而言,对比的是柱形的高低,柱体越高,代表的数值越大,反之亦然;
bar(x, height, width=0.8, bottom=None, color=None, edgecolor=None, tick_label=None, label = None, ecolor=None)
x:传递数值序列,指定条形图中x轴上的刻度值
height:传递数值序列,指定条形图y轴上的高度
width:指定条形图的宽度,默认为0.8
bottom:用于绘制堆叠条形图
color:指定条形图的填充色
edgecolor:指定条形图的边框色
tick_label:指定条形图的刻度标签
label:指定条形图的标签,一般用以添加图例
'''垂直条形图'''
import pandas as pd
# 读入数据
GDP = pd.read_excel(r'Province GDP 2017.xlsx')
# 设置绘图风格(不妨使用R语言中的ggplot2风格)
plt.style.use('ggplot')
# 绘制条形图
plt.bar(x = range(GDP.shape[0]), # 指定条形图x轴的刻度值
height = GDP.GDP, # 指定条形图y轴的数值
tick_label = GDP.Province, # 指定条形图x轴的刻度标签
color = 'steelblue', # 指定条形图的填充色
)
# 添加y轴的标签
plt.ylabel('GDP(万亿)')
# 添加条形图的标题
plt.title('2017年度6个省份GDP分布')
# 为每个条形图添加数值标签
for x,y in enumerate(GDP.GDP):
plt.text(x,y+0.1,'%s' %round(y,1),ha='center')
# 显示图形
plt.show()
'''水平条形图'''
# 对读入的数据做升序排序
GDP.sort_values(by = 'GDP', inplace = True)
# 绘制条形图
plt.barh(y = range(GDP.shape[0]), # 指定条形图y轴的刻度值
width = GDP.GDP, # 指定条形图x轴的数值
tick_label = GDP.Province, # 指定条形图y轴的刻度标签
color = 'steelblue', # 指定条形图的填充色
)
# 添加x轴的标签
plt.xlabel('GDP(万亿)')
# 添加条形图的标题
plt.title('2017年度6个省份GDP分布')
# 为每个条形图添加数值标签
for y,x in enumerate(GDP.GDP):
plt.text(x+0.1,y,'%s' %round(x,1),va='center')
# 显示图形
plt.show()
'''交叉条形图'''
HuRun = pd.read_excel('HuRun.xlsx')
# Pandas模块之水平交错条形图
HuRun_reshape = HuRun.pivot_table(index = 'City', columns='Year',
values='Counts').reset_index()
# 对数据集降序排序
HuRun_reshape.sort_values(by = 2016, ascending = False, inplace = True)
HuRun_reshape.plot(x = 'City', y = [2016,2017], kind = 'bar',
color = ['steelblue', 'indianred'],
# 用于旋转x轴刻度标签的角度,0表示水平显示刻度标签
rot = 0,
width = 0.8, title = '近两年5个城市亿万资产家庭数比较')
# 添加y轴标签
plt.ylabel('亿万资产家庭数')
plt.xlabel('')
plt.show()
直方图的绘制
直方图一般用来观察数据的分布形态,横坐标代表数值的均匀分段,纵坐标代表每个段内的观
测数量(频数);
一般直方图都会与核密度图搭配使用,目的是更加清晰地掌握数据的分布特征;
plt.hist(x, bins=10, normed=False, orientation='vertical', color=None, label=None)
x:指定要绘制直方图的数据。
bins:指定直方图条形的个数。
normed:是否将直方图的频数转换成频率
orientation:设置直方图的摆放方向,默认为垂直方向
color:设置直方图的填充色
edgecolor:设置直方图边框色
label:设置直方图的标签,可通过legend展示其图例
Titanic = pd.read_csv('titanic_train.csv')
# 检查年龄是否有缺失(如果数据中存在缺失值,将无法绘制直方图)
any(Titanic.Age.isnull())
# 不妨删除含有缺失年龄的观察
Titanic.dropna(subset=['Age'], inplace=True)
# 绘制直方图
plt.hist(x = Titanic.Age, # 指定绘图数据
bins = 20, # 指定直方图中条块的个数
color = 'steelblue', # 指定直方图的填充色
edgecolor = 'black' # 指定直方图的边框色
)
# 添加x轴和y轴标签
plt.xlabel('年龄')
plt.ylabel('频数')
# 添加标题
plt.title('乘客年龄分布')
# 显示图形
plt.show()
箱线图的绘制
箱线图是另一种体现数据分布的图形,通过该图可以得知数据的下须值(Q1-1.5IQR)、下四 分位数(Q1)、中位数(Q2)、均值、上四分位(Q3)数和上须值(Q3+1.5IQR),更重 要的是,箱线图还可以发现数据中的异常点;
plt.boxplot(x, vert=None, whis=None, patch_artist=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None)
x:指定要绘制箱线图的数据
vert:是否需要将箱线图垂直摆放,默认垂直摆放
whis:指定上下须与上下四分位的距离,默认为1.5倍的四分位差
patch_artist:bool类型参数,是否填充箱体的颜色;默认为False
meanline:bool类型参数,是否用线的形式表示均值,默认为False
showmeans:bool类型参数,是否显示均值,默认为False
showcaps:bool类型参数,是否显示箱线图顶端和末端的两条线(即上下须),默认为True showbox:bool类型参数,是否显示箱线图的箱体,默认为True
showfliers:是否显示异常值,默认为True
boxprops:设置箱体的属性,如边框色,填充色等
labels:为箱线图添加标签,类似于图例的作用
filerprops:设置异常值的属性,如异常点的形状、大小、填充色等
medianprops:设置中位数的属性,如线的类型、粗细等
meanprops:设置均值的属性,如点的大小、颜色等
capprops:设置箱线图顶端和末端线条的属性,如颜色、粗细等
whiskerprops:设置须的属性,如颜色、粗细、线的类型等
Sec_Buildings = pd.read_excel('sec_buildings.xlsx')
# 绘制箱线图
plt.boxplot(x = Sec_Buildings.price_unit, # 指定绘图数据
patch_artist=True, # 要求用自定义颜色填充盒形图,默认白色填充
showmeans=True, # 以点的形式显示均值
boxprops = {'color':'black','facecolor':'steelblue'},# 设置箱体属性,如边框色和填充色
# 设置异常点属性,如点的形状、填充色和点的大小
flierprops = {'marker':'o','markerfacecolor':'red', 'markersize':3,'markeredgecolor':'red'},
# 设置均值点的属性,如点的形状、填充色和点的大小
meanprops = {'marker':'D','markerfacecolor':'indianred', 'markersize':4},
# 设置中位数线的属性,如线的类型和颜色
medianprops = {'linestyle':'--','color':'orange'},
labels = [''] # 删除x轴的刻度标签,否则图形显示刻度标签为1
)
# 添加图形标题
plt.title('二手房单价分布的箱线图')
# 显示图形
plt.show()
折线图的绘制
对于时间序列数据而言,一般都会使用折线图反映数据背后的趋势。通常折线图的横坐标指代
日期数据,纵坐标代表某个数值型变量,当然还可以使用第三个离散变量对折线图进行分组处
理;
plt.plot(x, y, linestyle, linewidth, color, marker,markersize, markeredgecolor, markerfactcolor,markeredgewidth, label, alpha)
x:指定折线图的x轴数据
y:指定折线图的y轴数据
linestyle:指定折线的类型,可以是实线、虚线、点虚线、点点线等,默认为实线 linewidth:指定折线的宽度
marker:可以为折线图添加点,该参数是设置点的形状
markersize:设置点的大小
markeredgecolor:设置点的边框色
markerfactcolor:设置点的填充色
markeredgewidth:设置点的边框宽度
label:为折线图添加标签,类似于图例的作用
%matplotlib # 以弹框的形式显示图形
# 数据读取
wechat = pd.read_excel(r'wechat.xlsx')
# 绘制单条折线图
plt.plot(wechat.Date, # x轴数据
wechat.Counts, # y轴数据
linestyle = '-', # 折线类型
linewidth = 2, # 折线宽度
color = 'steelblue', # 折线颜色
marker = 'o', # 折线图中添加圆点
markersize = 6, # 点的大小
markeredgecolor='black', # 点的边框色
markerfacecolor='brown') # 点的填充色
# 获取图的坐标信息
ax = plt.gca()
# 设置日期的显示格式
date_format = mpl.dates.DateFormatter("%m-%d")
ax.xaxis.set_major_formatter(date_format)
# 设置x轴每个刻度的间隔天数
xlocator = mpl.ticker.MultipleLocator(7)
ax.xaxis.set_major_locator(xlocator)
# 添加y轴标签
plt.ylabel('人数')
# 添加图形标题
plt.title('每天微信文章阅读人数趋势')
# 显示图形
plt.show()
# 绘制两条折线图
# 导入模块,用于日期刻度的修改
import matplotlib as mpl
# 绘制阅读人数折线图
plt.plot(wechat.Date, # x轴数据
wechat.Counts, # y轴数据
linestyle = '-', # 折线类型,实心线
color = 'steelblue', # 折线颜色
label = '阅读人数'
)
# 绘制阅读人次折线图
plt.plot(wechat.Date, # x轴数据
wechat.Times, # y轴数据
linestyle = '--', # 折线类型,虚线
color = 'indianred', # 折线颜色
label = '阅读人次'
)
# 获取图的坐标信息
ax = plt.gca()
# 设置日期的显示格式
date_format = mpl.dates.DateFormatter("%m-%d")
ax.xaxis.set_major_formatter(date_format)
# 设置x轴显示多少个日期刻度
# xlocator = mpl.ticker.LinearLocator(10)
# 设置x轴每个刻度的间隔天数
xlocator = mpl.ticker.MultipleLocator(7)
ax.xaxis.set_major_locator(xlocator)
# 为了避免x轴刻度标签的紧凑,将刻度标签旋转45度
plt.xticks(rotation=45)
# 添加y轴标签
plt.ylabel('人数')
# 添加图形标题
plt.title('每天微信文章阅读人数与人次趋势')
# 添加图例
plt.legend()
# 显示图形
plt.show()
散点图的绘制
如果需要研究两个数值型变量之间是否存在某种关系,例如正向的线性关系,或者是趋势性的
非线性关系,那么散点图将是最佳的选择;
scatter(x, y, s=20, c=None, marker='o', alpha=None, linewidths=None, edgecolors=None)
x:指定散点图的x轴数据
y:指定散点图的y轴数据
s:指定散点图点的大小,默认为20,通过传入其他数值型变量,可以实现气泡图的绘制
c:指定散点图点的颜色,默认为蓝色,也可以传递其他数值型变量,通过cmap参数的色阶表示数值大小
marker:指定散点图点的形状,默认为空心圆
alpha:设置散点的透明度
linewidths:设置散点边界线的宽度
edgecolors:设置散点边界线的颜色
# 读入数据
iris = pd.read_csv(r'iris.csv')
# 绘制散点图
plt.scatter(x = iris.Petal_Width, # 指定散点图的x轴数据
y = iris.Petal_Length, # 指定散点图的y轴数据
color = 'steelblue' # 指定散点图中点的颜色
)
# 添加x轴和y轴标签
plt.xlabel('花瓣宽度')
plt.ylabel('花瓣长度')
# 添加标题
plt.title('鸢尾花的花瓣宽度与长度关系')
# 显示图形
plt.show()
气泡图的绘制
气泡图的实质就是通过第三个数值型变量控制每个散点的大小,点越大,代表的第三维数值越
高,反之亦然;
气泡图的绘制,使用的仍然是scatter函数,区别在于函数的s参数被赋予了具体的数值型变量;
热力图的绘制
热力图也称为交叉填充表,图形最典型的用法就是实现列联表的可视化,即通过图形的方式展
现两个离散变量之间的组合关系;
# matplotlib绘制热力图不太方便需要借助于seaborn模块
sns.heatmap(data, cmap=None, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor ='white)
data:指定绘制热力图的数据集
cmap:指定一个colormap对象,用于热力图的填充色
annot:指定一个bool类型的值或与data参数形状一样的数组,如果为True,就在热力图的每个单元上显示数值
fmt:指定单元格中数据的显示格式
annot_kws:有关单元格中数值标签的其他属性描述,如颜色、大小等
linewidths:指定每个单元格的边框宽度
linecolor:指定每个单元格的边框颜色
import numpy as np
import seaborn as sns
# 读取数据
Sales = pd.read_excel(r'Sales.xlsx')
# 根据交易日期,衍生出年份和月份字段
Sales['year'] = Sales.Date.dt.year
Sales['month'] = Sales.Date.dt.month
# 统计每年各月份的销售总额(绘制热力图之前,必须将数据转换为交叉表形式)
Summary = Sales.pivot_table(index = 'month', columns = 'year', values = 'Sales', aggfunc = np.sum)
Summary
# 绘制热力图
sns.heatmap(data = Summary, # 指定绘图数据
cmap = 'PuBuGn', # 指定填充色
linewidths = .1, # 设置每个单元格边框的宽度
annot = True, # 显示数值
fmt = '.1e' # 以科学计算法显示数据
)
#添加标题
plt.title('每年各月份销售总额热力图')
# 显示图形
plt.show()
组合图的绘制
工作中往往会根据业务需求,将绘制的多个图形组合到一个大图框内,形成类似仪表板的效果;
plt.subplot2grid(shape, loc, rowspan=1, colspan=1, **kwargs)
shape:指定组合图的框架形状,以元组形式传递,如2×3的矩阵可以表示成(2,3)
loc:指定子图所在的位置,如shape中第一行第一列可以表示成(0,0)
rowspan:指定某个子图需要跨几行
colspan:指定某个子图需要跨几列
"""
# 设置大图框的长和高 plt.figure(figsize = (12,6))
# 设置第一个子图的布局
ax1 = plt.subplot2grid(shape = (2,3), loc = (0,0))
# 设置第二个子图的布局
ax2 = plt.subplot2grid(shape = (2,3), loc = (0,1))
# 设置第三个子图的布局
ax3 = plt.subplot2grid(shape = (2,3), loc = (0,2), rowspan = 2)
# 设置第四个子图的布局
ax4 = plt.subplot2grid(shape = (2,3), loc = (1,0), colspan = 2)
"""
# 读取数据
Prod_Trade = pd.read_excel(r'Prod_Trade.xlsx')
# 衍生出交易年份和月份字段
Prod_Trade['year'] = Prod_Trade.Date.dt.year
Prod_Trade['month'] = Prod_Trade.Date.dt.month
# 设置大图框的长和高
plt.figure(figsize = (12,6))
# 设置第一个子图的布局
ax1 = plt.subplot2grid(shape = (2,3), loc = (0,0))
# 统计2012年各订单等级的数量
Class_Counts = Prod_Trade.Order_Class[Prod_Trade.year == 2012].value_counts()
Class_Percent = Class_Counts/Class_Counts.sum()
# 将饼图设置为圆形(否则有点像椭圆)
ax1.set_aspect(aspect = 'equal')
# 绘制订单等级饼图
ax1.pie(x = Class_Percent.values, labels = Class_Percent.index, autopct = '%.1f%%')
# 添加标题
ax1.set_title('各等级订单比例')
# 设置第二个子图的布局
ax2 = plt.subplot2grid(shape = (2,3), loc = (0,1))
# 统计2012年每月销售额
Month_Sales = Prod_Trade[Prod_Trade.year == 2012].groupby(by = 'month').aggregate({'Sales':np.sum})
# 绘制销售额趋势图
Month_Sales.plot(title = '2012年各月销售趋势', ax = ax2, legend = False)
# 删除x轴标签
ax2.set_xlabel('')
# 设置第三个子图的布局
ax3 = plt.subplot2grid(shape = (2,3), loc = (0,2), rowspan = 2)
# 绘制各运输方式的成本箱线图
sns.boxplot(x = 'Transport', y = 'Trans_Cost', data = Prod_Trade, ax = ax3)
# 添加标题
ax3.set_title('各运输方式成本分布')
# 删除x轴标签
ax3.set_xlabel('')
# 修改y轴标签
ax3.set_ylabel('运输成本')
# 设置第四个子图的布局
ax4 = plt.subplot2grid(shape = (2,3), loc = (1,0), colspan = 2)
# 2012年客单价分布直方图
sns.distplot(Prod_Trade.Sales[Prod_Trade.year == 2012], bins = 40, norm_hist = True, ax = ax4, hist_kws = {'color':'steelblue'}, kde_kws=({'linestyle':'--', 'color':'red'}))
# 添加标题
ax4.set_title('2012年客单价分布图')
# 修改x轴标签
ax4.set_xlabel('销售额')
# 调整子图之间的水平间距和高度间距
plt.subplots_adjust(hspace=0.6, wspace=0.3)
# 图形显示
plt.show()
总结
数据可视化工具
1.matplotlib
2.seaborn
3.echarts/highcharts
pandas补充(其二)与matplotlib补充的更多相关文章
- matplotlib补充知识及数据清理方法
今日内容概要 数据操作 数据清洗理论 数据清洗实操 数据操作 read_csv read_excel read_hdf read_html read_json read_msgpack read_sq ...
- 数据分析处理库pandas及可视化库Matplotlib
一.读取文件 1)读取文件内容 import pandas info = pandas.read_csv('1.csv',encoding='gbk') # 获取文件信息 print(info) pr ...
- numpy、pandas、scipy、matplotlib、jieba、 openpyxl、pillow的安装
cmd环境下进入python安装包里的Script文件夹 安装numpy 安装pandas 安装scipy 安装matplotlib 安装jieba(应该是之前装的库安装依赖时下载了) 安装openp ...
- 推荐:python科学计算pandas/python画图库matplotlib【转】
机器学习基础3--python科学计算pandas(上) 地址:https://wangyeming.github.io/2018/09/04/marchine-learning-base-panda ...
- 用豆瓣加速安装pandas、numpy、matplotlib(画图)
安装pandas.numpy会同时被安装 #pthony2.x,用豆瓣加速安装pandas pip install -i https://pypi.doubanio.com/simple/ panda ...
- Java GUI界面补充总结(不定期补充)
一.Java中如何设置各类组件透明 感谢原文:https://kslsi.iteye.com/blog/2096608 补充:Frame透明:AWTUtilities.setWindowOpacity ...
- Android 布局的一些控件的补充和布局的补充(今儿没课)
前面写的博客可能会有点乱: 1,是不太会排版. 2,就是我一边看书,一边听学长讲课,所以有的知识就融入进去了,我写的都是自己的意见和理解,大家取我精华,弃我糟粕哈. 今天是书上的内容,主要讲布局的,一 ...
- pandas模块补充
数据分析模块pandas和matplotlib补充 面向百度式编程 面向百度式工作 遇到没有见过的知识点或者是相关知识点一定不要慌,结合百度和已知的知识点去学习 pandas模块补充 基于numpy构 ...
- 数据可视化实例(七): 计数图(matplotlib,pandas)
https://datawhalechina.github.io/pms50/#/chapter5/chapter5 计数图 (Counts Plot) 避免点重叠问题的另一个选择是增加点的大小,这取 ...
随机推荐
- Asp-Net-Core开发笔记:接口返回json对象出现套娃递归问题
前言 看了下推送记录,一个月前,OK,我又变成月更了o(╯□╰)o,这绝对不行![○・`Д´・ ○] 所以今天来更新了 其实不是我懒得更新或者是太忙,其实是最近在写一篇很长的博客,一直没写完( Ĭ ^ ...
- kubernetes之Pod水平自动伸缩(HPA)
https://k8smeetup.github.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ Horizon ...
- SIFT,SuperPoint在图像特征提取上的对比实验
SIFT,SuperPoint都具有提取图片特征点,并且输出特征描述子的特性,本篇文章从特征点的提取数量,特征点的正确匹配数量来探索一下二者的优劣. 视角变化较大的情况下 原图1 原图2 SuperP ...
- shiro 快速入门详解。
package com.aaa.lee.shiro; import org.apache.shiro.SecurityUtils; import org.apache.shiro.authc.*; i ...
- NumPy 秘籍中文第二版·翻译完成
原文:NumPy Cookbook - Second Edition 协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远. 在线阅读 Apache ...
- spring filter详解
一.Filter基本工作原理 1.Filter 程序是一个实现了特殊接口的 Java 类,与 Servlet 类似,也是由 Servlet 容器进行调用和执行的. 2.当在 web.xml 注册了一个 ...
- 程序员的情人节「GitHub 热点速览 v.22.07」
又是一年情人日,刚好还是发文的今天.也没什么好送的,送点程序员的浪漫--代码和开源项目吧.记得在本周特推查收这份来自程序员的独有浪漫. 本周 GitHub 霸榜的项目基本上都是老项目,从老项目中挖点新 ...
- 一加6刷入kali nethunter
Installing Kali NetHunter On the OnePlus 6 准备工具: adb: https://jingyan.baidu.com/article/22fe7cedf67e ...
- Spark算子 - groupBy
释义 根据RDD中的某个属性进行分组,分组后形式为(k, [(k, v1), (k, v2), ...]),即groupBy 后组内元素会保留key值 方法签名如下: def groupBy[K](f ...
- charles模拟弱网
Charles操作:延迟设置 >选择相应的网络延迟设置或者自定义延迟 >开启延迟即可,如图: