pandas补充(其二)与matplotlib补充
今日内容概要
- pandas补充知识(2)
- matplotlib补充知识
今日内容详细
pandas补充
数据汇总
# 数据透视表
pd.pivot_table(data,values-None,index=None,columns=None,aggfunc='mean',fill_value=None,margins=False,dropna=True,margins_name='All')
data:指定需要构造透视表的数据集
values:指定需要拉入“数值”框的字段列表
index:指定需要拉入“行标签”框的字段列表
columns:指定需要拉入“列标签”框的字段列表
aggfunc:指定数值的统计函数,默认为统计均值,也可以指定
numpy模块中的其他统计函数
fill_value:指定一个标量,用于填充缺失值
margins:bool类型参数,是否需要显示行或列的总计值,默认为False
dropna:bool类型参数,是否需要删除整列为缺失值的字段,默认为True
margins_name:指定行或列的总计名称,默认为All
data06 = pd.read_csv(r'diamonds.csv')
data06.head()
pd.pivot_table(data06, index = 'color', values='price', aggfunc='mean')
pd.pivot_table(data06, index = 'color', columns='clarity', values='price', aggfunc='size')
分组与聚合
import numpy as np
# 通过groupby方法,指定分组变量
grouped = data06.groupby(by = ['color','cut'])
# 对分组变量进行统计汇总
result = grouped.aggregate({'color':np.size, 'carat':np.min,
'price':np.mean, 'table':np.max})
# 调整变量名的顺序
result = pd.DataFrame(result, columns=['color','carat','price','table'])
# 数据集重命名
result.rename(columns={'color':'counts',
'carat':'min_weight',
'price':'avg_price',
'table':'max_table'},
inplace=True)
练习题
# 分析NBA各球队冠军次数及球员FMVP次数
res = pd.read_html('https://baike.baidu.com/item/NBA%E6%80%BB%E5%86%A0%E5%86%9B/2173192?fr=aladdin') ### 返回的是一个列表 列表中是当前页面的所有表格数据
type(res)
res
# 获取有效数据
champion = res[0]
champion
# 针对冠军字段分组
champion.groupby('冠军').groups
# 获取分组之后的各分组大小
champion.groupby('冠军').size()
# 获取各组冠军次数
champion.groupby('冠军').size().sort_values(ascending=False) # 升序
# 分组字段可以一次性取多个
champion.groupby(['冠军', 'FMVP']).size()
数据的合并
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None)
objs:指定需要合并的对象,可以是序列、数据框或面板数据构成的列表
axis:指定数据合并的轴,默认为0,表示合并多个数据的行,如果为1,就表示合并多个数据的列
join:指定合并的方式,默认为outer,表示合并所有数据,如果改为inner,表示合并公共部分的数据
join_axes:合并数据后,指定保留的数据轴
ignore_index:bool类型的参数,表示是否忽略原数据集的索引,默认为False,如果设为True,就表示忽略原索引并生成新索引
keys:为合并后的数据添加新索引,用于区分各个数据部分
# 构造数据集df1和df2
df1 = pd.DataFrame({
'name':['张三','李四','王二'],
'age':[21,25,22],
'gender':['男','女','男']}
)
df2 = pd.DataFrame({
'name':['丁一','赵五'],
'age':[23,22],
'gender':['女','女']}
)
# 数据集的纵向合并
pd.concat([df1,df2] , keys = ['df1','df2']) # 加keys参数可以在合并之后看到数据来源
pd.concat([df1,df2] , keys = ['df1','df2']).reset_index()
pd.concat([df1,df2] , keys = ['df1','df2']).reset_index().drop(labels ='level_1', axis = 1).rename(columns = {'level_0':'Class'})
# 如果df2数据集中的“姓名变量为Name”
df2 = pd.DataFrame({
'Name':['丁一','赵五'],
'age':[23,22],
'gender':['女','女']}
)
# 数据集的纵向合并
pd.concat([df1,df2])
# concat行合并,数据源的变量名称完全相同(变量名顺序没有要求)
数据的连接
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'))
"""
emp
id name age dep_id
dep
id dep_name dep_desc
select * from emp inner join dep on emp.dep_id = dep.id;
"""
left:指定需要连接的主表
right:指定需要连接的辅表
how:指定连接方式,默认为inner内连,还有其他选项,如左连left、右连right和外连outer(union)
on:指定连接两张表的共同字段
left_on:指定主表中需要连接的共同字段
right_on:指定辅表中需要连接的共同字段
left_index:bool类型参数,是否将主表中的行索引用作表连接的共同字段,默认为False
right_index:bool类型参数,是否将辅表中的行索引用作表连接的共同字段,默认为False
sort:bool类型参数,是否对连接后的数据按照共同字段排序,默认为False
suffixes:如果数据连接的结果中存在重叠的变量名,则使用各自的前缀进行区分
# 构造数据集
df3 = pd.DataFrame({
'id':[1,2,3,4,5],
'name':['张三','李四','王二','丁一','赵五'],
'age':[27,24,25,23,25],
'gender':['男','男','男','女','女']})
df4 = pd.DataFrame({
'Id':[1,2,2,4,4,4,5],
'score':[83,81,87,75,86,74,88],
'kemu':['科目1','科目1','科目2','科目1','科目2','科目3','科目1']})
df5 = pd.DataFrame({
'id':[1,3,5],
'name':['张三','王二','赵五'],
'income':[13500,18000,15000]})
# 首先df3和df4连接
merge1 = pd.merge(left = df3,
right = df4,
how = 'left',
left_on='id',
right_on='Id')
# 再将连接结果与df5连接
merge2 = pd.merge(left = merge1,
right = df5,
how = 'left')
matplotlib补充
简介
是一个强大的python绘图和数据可视化工具包,数据可视化也是我们数据分析重要环节之一,可以帮助我们分析出很多价值信息,也是数据分析的最后一个可视化阶段
下载
# python纯开发环境下
pip3 install matplotlib
# anaconda环境下
conda install matplotlib
'''anaconda已经自动帮助我们下载好了数据分析相关的模块,其实无需我们再下载'''
导入
import matplotlib.pyplot as plt
课程目标
1. 离散型数据的可视化
2. 连续性数据的可视化
3. 关系型数据的可视化
4. 多图形的组合
饼图的绘制
饼图属于最传统的统计图形之一,几乎随处可见,例如大型公司的屏幕墙、各种年度论坛的演示稿以及各大媒体发布的数据统计报告等;
饼图是将一个圆分割成不同大小的楔(扇)形,而圆中的每一个楔形代表了不同的类别值,通常根据楔形的面积大小来判断类别值的差异;
pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, labeldistance=1.1)
x:指定绘图的数据
explode:指定饼图某些部分的突出显示,即呈现爆炸式
labels:为饼图添加标签说明,类似于图例说明
colors:指定饼图的填充色
autopct:自动添加百分比显示,可以采用格式化的方法显示
pctdistance:设置百分比标签与圆心的距离
labeldistance:设置各扇形标签(图例)与圆心的距离
# 导入第三方模块
import matplotlib.pyplot as plt
# 解决中文乱码情况
plt.rcParams['font.sans-serif'] = ['SimHei']
# 构造数据
edu = [0.2515,0.3724,0.3336,0.0368,0.0057]
labels = ['中专','大专','本科','硕士','其他']
explode = [0,0.1,0,0,0]
# 绘制饼图 plt.axes(aspect='equal') # 如果python版本较低可能是扁的需要加该代码
plt.pie(x = edu, # 绘图数据
labels=labels, # 添加教育水平标签
autopct='%.1f%%', # 设置百分比的格式,这里保留一位小数
explode = explode
)
# 显示图形
plt.show()
条形图的绘制
虽然饼图可以很好地表达离散型变量在各水平上的差异,但其不擅长对比差异不大或水平值过多的离散型变量,因为饼图是通过各扇形面积的大小来比价差异的,面积的比较有时并不直观;对于条形图而言,对比的是柱形的高低,柱体越高,代表的数值越大,反之亦然;
bar(x, height, width=0.8, bottom=None, color=None, edgecolor=None, tick_label=None, label = None, ecolor=None)
x:传递数值序列,指定条形图中x轴上的刻度值
height:传递数值序列,指定条形图y轴上的高度
width:指定条形图的宽度,默认为0.8
bottom:用于绘制堆叠条形图
color:指定条形图的填充色
edgecolor:指定条形图的边框色
tick_label:指定条形图的刻度标签
label:指定条形图的标签,一般用以添加图例
'''垂直条形图'''
import pandas as pd
# 读入数据
GDP = pd.read_excel(r'Province GDP 2017.xlsx')
# 设置绘图风格(不妨使用R语言中的ggplot2风格)
plt.style.use('ggplot')
# 绘制条形图
plt.bar(x = range(GDP.shape[0]), # 指定条形图x轴的刻度值
height = GDP.GDP, # 指定条形图y轴的数值
tick_label = GDP.Province, # 指定条形图x轴的刻度标签
color = 'steelblue', # 指定条形图的填充色
)
# 添加y轴的标签
plt.ylabel('GDP(万亿)')
# 添加条形图的标题
plt.title('2017年度6个省份GDP分布')
# 为每个条形图添加数值标签
for x,y in enumerate(GDP.GDP):
plt.text(x,y+0.1,'%s' %round(y,1),ha='center')
# 显示图形
plt.show()
'''水平条形图'''
# 对读入的数据做升序排序
GDP.sort_values(by = 'GDP', inplace = True)
# 绘制条形图
plt.barh(y = range(GDP.shape[0]), # 指定条形图y轴的刻度值
width = GDP.GDP, # 指定条形图x轴的数值
tick_label = GDP.Province, # 指定条形图y轴的刻度标签
color = 'steelblue', # 指定条形图的填充色
)
# 添加x轴的标签
plt.xlabel('GDP(万亿)')
# 添加条形图的标题
plt.title('2017年度6个省份GDP分布')
# 为每个条形图添加数值标签
for y,x in enumerate(GDP.GDP):
plt.text(x+0.1,y,'%s' %round(x,1),va='center')
# 显示图形
plt.show()
'''交叉条形图'''
HuRun = pd.read_excel('HuRun.xlsx')
# Pandas模块之水平交错条形图
HuRun_reshape = HuRun.pivot_table(index = 'City', columns='Year',
values='Counts').reset_index()
# 对数据集降序排序
HuRun_reshape.sort_values(by = 2016, ascending = False, inplace = True)
HuRun_reshape.plot(x = 'City', y = [2016,2017], kind = 'bar',
color = ['steelblue', 'indianred'],
# 用于旋转x轴刻度标签的角度,0表示水平显示刻度标签
rot = 0,
width = 0.8, title = '近两年5个城市亿万资产家庭数比较')
# 添加y轴标签
plt.ylabel('亿万资产家庭数')
plt.xlabel('')
plt.show()
直方图的绘制
直方图一般用来观察数据的分布形态,横坐标代表数值的均匀分段,纵坐标代表每个段内的观
测数量(频数);
一般直方图都会与核密度图搭配使用,目的是更加清晰地掌握数据的分布特征;
plt.hist(x, bins=10, normed=False, orientation='vertical', color=None, label=None)
x:指定要绘制直方图的数据。
bins:指定直方图条形的个数。
normed:是否将直方图的频数转换成频率
orientation:设置直方图的摆放方向,默认为垂直方向
color:设置直方图的填充色
edgecolor:设置直方图边框色
label:设置直方图的标签,可通过legend展示其图例
Titanic = pd.read_csv('titanic_train.csv')
# 检查年龄是否有缺失(如果数据中存在缺失值,将无法绘制直方图)
any(Titanic.Age.isnull())
# 不妨删除含有缺失年龄的观察
Titanic.dropna(subset=['Age'], inplace=True)
# 绘制直方图
plt.hist(x = Titanic.Age, # 指定绘图数据
bins = 20, # 指定直方图中条块的个数
color = 'steelblue', # 指定直方图的填充色
edgecolor = 'black' # 指定直方图的边框色
)
# 添加x轴和y轴标签
plt.xlabel('年龄')
plt.ylabel('频数')
# 添加标题
plt.title('乘客年龄分布')
# 显示图形
plt.show()
箱线图的绘制
箱线图是另一种体现数据分布的图形,通过该图可以得知数据的下须值(Q1-1.5IQR)、下四 分位数(Q1)、中位数(Q2)、均值、上四分位(Q3)数和上须值(Q3+1.5IQR),更重 要的是,箱线图还可以发现数据中的异常点;
plt.boxplot(x, vert=None, whis=None, patch_artist=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None)
x:指定要绘制箱线图的数据
vert:是否需要将箱线图垂直摆放,默认垂直摆放
whis:指定上下须与上下四分位的距离,默认为1.5倍的四分位差
patch_artist:bool类型参数,是否填充箱体的颜色;默认为False
meanline:bool类型参数,是否用线的形式表示均值,默认为False
showmeans:bool类型参数,是否显示均值,默认为False
showcaps:bool类型参数,是否显示箱线图顶端和末端的两条线(即上下须),默认为True showbox:bool类型参数,是否显示箱线图的箱体,默认为True
showfliers:是否显示异常值,默认为True
boxprops:设置箱体的属性,如边框色,填充色等
labels:为箱线图添加标签,类似于图例的作用
filerprops:设置异常值的属性,如异常点的形状、大小、填充色等
medianprops:设置中位数的属性,如线的类型、粗细等
meanprops:设置均值的属性,如点的大小、颜色等
capprops:设置箱线图顶端和末端线条的属性,如颜色、粗细等
whiskerprops:设置须的属性,如颜色、粗细、线的类型等
Sec_Buildings = pd.read_excel('sec_buildings.xlsx')
# 绘制箱线图
plt.boxplot(x = Sec_Buildings.price_unit, # 指定绘图数据
patch_artist=True, # 要求用自定义颜色填充盒形图,默认白色填充
showmeans=True, # 以点的形式显示均值
boxprops = {'color':'black','facecolor':'steelblue'},# 设置箱体属性,如边框色和填充色
# 设置异常点属性,如点的形状、填充色和点的大小
flierprops = {'marker':'o','markerfacecolor':'red', 'markersize':3,'markeredgecolor':'red'},
# 设置均值点的属性,如点的形状、填充色和点的大小
meanprops = {'marker':'D','markerfacecolor':'indianred', 'markersize':4},
# 设置中位数线的属性,如线的类型和颜色
medianprops = {'linestyle':'--','color':'orange'},
labels = [''] # 删除x轴的刻度标签,否则图形显示刻度标签为1
)
# 添加图形标题
plt.title('二手房单价分布的箱线图')
# 显示图形
plt.show()
折线图的绘制
对于时间序列数据而言,一般都会使用折线图反映数据背后的趋势。通常折线图的横坐标指代
日期数据,纵坐标代表某个数值型变量,当然还可以使用第三个离散变量对折线图进行分组处
理;
plt.plot(x, y, linestyle, linewidth, color, marker,markersize, markeredgecolor, markerfactcolor,markeredgewidth, label, alpha)
x:指定折线图的x轴数据
y:指定折线图的y轴数据
linestyle:指定折线的类型,可以是实线、虚线、点虚线、点点线等,默认为实线 linewidth:指定折线的宽度
marker:可以为折线图添加点,该参数是设置点的形状
markersize:设置点的大小
markeredgecolor:设置点的边框色
markerfactcolor:设置点的填充色
markeredgewidth:设置点的边框宽度
label:为折线图添加标签,类似于图例的作用
%matplotlib # 以弹框的形式显示图形
# 数据读取
wechat = pd.read_excel(r'wechat.xlsx')
# 绘制单条折线图
plt.plot(wechat.Date, # x轴数据
wechat.Counts, # y轴数据
linestyle = '-', # 折线类型
linewidth = 2, # 折线宽度
color = 'steelblue', # 折线颜色
marker = 'o', # 折线图中添加圆点
markersize = 6, # 点的大小
markeredgecolor='black', # 点的边框色
markerfacecolor='brown') # 点的填充色
# 获取图的坐标信息
ax = plt.gca()
# 设置日期的显示格式
date_format = mpl.dates.DateFormatter("%m-%d")
ax.xaxis.set_major_formatter(date_format)
# 设置x轴每个刻度的间隔天数
xlocator = mpl.ticker.MultipleLocator(7)
ax.xaxis.set_major_locator(xlocator)
# 添加y轴标签
plt.ylabel('人数')
# 添加图形标题
plt.title('每天微信文章阅读人数趋势')
# 显示图形
plt.show()
# 绘制两条折线图
# 导入模块,用于日期刻度的修改
import matplotlib as mpl
# 绘制阅读人数折线图
plt.plot(wechat.Date, # x轴数据
wechat.Counts, # y轴数据
linestyle = '-', # 折线类型,实心线
color = 'steelblue', # 折线颜色
label = '阅读人数'
)
# 绘制阅读人次折线图
plt.plot(wechat.Date, # x轴数据
wechat.Times, # y轴数据
linestyle = '--', # 折线类型,虚线
color = 'indianred', # 折线颜色
label = '阅读人次'
)
# 获取图的坐标信息
ax = plt.gca()
# 设置日期的显示格式
date_format = mpl.dates.DateFormatter("%m-%d")
ax.xaxis.set_major_formatter(date_format)
# 设置x轴显示多少个日期刻度
# xlocator = mpl.ticker.LinearLocator(10)
# 设置x轴每个刻度的间隔天数
xlocator = mpl.ticker.MultipleLocator(7)
ax.xaxis.set_major_locator(xlocator)
# 为了避免x轴刻度标签的紧凑,将刻度标签旋转45度
plt.xticks(rotation=45)
# 添加y轴标签
plt.ylabel('人数')
# 添加图形标题
plt.title('每天微信文章阅读人数与人次趋势')
# 添加图例
plt.legend()
# 显示图形
plt.show()
散点图的绘制
如果需要研究两个数值型变量之间是否存在某种关系,例如正向的线性关系,或者是趋势性的
非线性关系,那么散点图将是最佳的选择;
scatter(x, y, s=20, c=None, marker='o', alpha=None, linewidths=None, edgecolors=None)
x:指定散点图的x轴数据
y:指定散点图的y轴数据
s:指定散点图点的大小,默认为20,通过传入其他数值型变量,可以实现气泡图的绘制
c:指定散点图点的颜色,默认为蓝色,也可以传递其他数值型变量,通过cmap参数的色阶表示数值大小
marker:指定散点图点的形状,默认为空心圆
alpha:设置散点的透明度
linewidths:设置散点边界线的宽度
edgecolors:设置散点边界线的颜色
# 读入数据
iris = pd.read_csv(r'iris.csv')
# 绘制散点图
plt.scatter(x = iris.Petal_Width, # 指定散点图的x轴数据
y = iris.Petal_Length, # 指定散点图的y轴数据
color = 'steelblue' # 指定散点图中点的颜色
)
# 添加x轴和y轴标签
plt.xlabel('花瓣宽度')
plt.ylabel('花瓣长度')
# 添加标题
plt.title('鸢尾花的花瓣宽度与长度关系')
# 显示图形
plt.show()
气泡图的绘制
气泡图的实质就是通过第三个数值型变量控制每个散点的大小,点越大,代表的第三维数值越
高,反之亦然;
气泡图的绘制,使用的仍然是scatter函数,区别在于函数的s参数被赋予了具体的数值型变量;
热力图的绘制
热力图也称为交叉填充表,图形最典型的用法就是实现列联表的可视化,即通过图形的方式展
现两个离散变量之间的组合关系;
# matplotlib绘制热力图不太方便需要借助于seaborn模块
sns.heatmap(data, cmap=None, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor ='white)
data:指定绘制热力图的数据集
cmap:指定一个colormap对象,用于热力图的填充色
annot:指定一个bool类型的值或与data参数形状一样的数组,如果为True,就在热力图的每个单元上显示数值
fmt:指定单元格中数据的显示格式
annot_kws:有关单元格中数值标签的其他属性描述,如颜色、大小等
linewidths:指定每个单元格的边框宽度
linecolor:指定每个单元格的边框颜色
import numpy as np
import seaborn as sns
# 读取数据
Sales = pd.read_excel(r'Sales.xlsx')
# 根据交易日期,衍生出年份和月份字段
Sales['year'] = Sales.Date.dt.year
Sales['month'] = Sales.Date.dt.month
# 统计每年各月份的销售总额(绘制热力图之前,必须将数据转换为交叉表形式)
Summary = Sales.pivot_table(index = 'month', columns = 'year', values = 'Sales', aggfunc = np.sum)
Summary
# 绘制热力图
sns.heatmap(data = Summary, # 指定绘图数据
cmap = 'PuBuGn', # 指定填充色
linewidths = .1, # 设置每个单元格边框的宽度
annot = True, # 显示数值
fmt = '.1e' # 以科学计算法显示数据
)
#添加标题
plt.title('每年各月份销售总额热力图')
# 显示图形
plt.show()
组合图的绘制
工作中往往会根据业务需求,将绘制的多个图形组合到一个大图框内,形成类似仪表板的效果;
plt.subplot2grid(shape, loc, rowspan=1, colspan=1, **kwargs)
shape:指定组合图的框架形状,以元组形式传递,如2×3的矩阵可以表示成(2,3)
loc:指定子图所在的位置,如shape中第一行第一列可以表示成(0,0)
rowspan:指定某个子图需要跨几行
colspan:指定某个子图需要跨几列
"""
# 设置大图框的长和高 plt.figure(figsize = (12,6))
# 设置第一个子图的布局
ax1 = plt.subplot2grid(shape = (2,3), loc = (0,0))
# 设置第二个子图的布局
ax2 = plt.subplot2grid(shape = (2,3), loc = (0,1))
# 设置第三个子图的布局
ax3 = plt.subplot2grid(shape = (2,3), loc = (0,2), rowspan = 2)
# 设置第四个子图的布局
ax4 = plt.subplot2grid(shape = (2,3), loc = (1,0), colspan = 2)
"""
# 读取数据
Prod_Trade = pd.read_excel(r'Prod_Trade.xlsx')
# 衍生出交易年份和月份字段
Prod_Trade['year'] = Prod_Trade.Date.dt.year
Prod_Trade['month'] = Prod_Trade.Date.dt.month
# 设置大图框的长和高
plt.figure(figsize = (12,6))
# 设置第一个子图的布局
ax1 = plt.subplot2grid(shape = (2,3), loc = (0,0))
# 统计2012年各订单等级的数量
Class_Counts = Prod_Trade.Order_Class[Prod_Trade.year == 2012].value_counts()
Class_Percent = Class_Counts/Class_Counts.sum()
# 将饼图设置为圆形(否则有点像椭圆)
ax1.set_aspect(aspect = 'equal')
# 绘制订单等级饼图
ax1.pie(x = Class_Percent.values, labels = Class_Percent.index, autopct = '%.1f%%')
# 添加标题
ax1.set_title('各等级订单比例')
# 设置第二个子图的布局
ax2 = plt.subplot2grid(shape = (2,3), loc = (0,1))
# 统计2012年每月销售额
Month_Sales = Prod_Trade[Prod_Trade.year == 2012].groupby(by = 'month').aggregate({'Sales':np.sum})
# 绘制销售额趋势图
Month_Sales.plot(title = '2012年各月销售趋势', ax = ax2, legend = False)
# 删除x轴标签
ax2.set_xlabel('')
# 设置第三个子图的布局
ax3 = plt.subplot2grid(shape = (2,3), loc = (0,2), rowspan = 2)
# 绘制各运输方式的成本箱线图
sns.boxplot(x = 'Transport', y = 'Trans_Cost', data = Prod_Trade, ax = ax3)
# 添加标题
ax3.set_title('各运输方式成本分布')
# 删除x轴标签
ax3.set_xlabel('')
# 修改y轴标签
ax3.set_ylabel('运输成本')
# 设置第四个子图的布局
ax4 = plt.subplot2grid(shape = (2,3), loc = (1,0), colspan = 2)
# 2012年客单价分布直方图
sns.distplot(Prod_Trade.Sales[Prod_Trade.year == 2012], bins = 40, norm_hist = True, ax = ax4, hist_kws = {'color':'steelblue'}, kde_kws=({'linestyle':'--', 'color':'red'}))
# 添加标题
ax4.set_title('2012年客单价分布图')
# 修改x轴标签
ax4.set_xlabel('销售额')
# 调整子图之间的水平间距和高度间距
plt.subplots_adjust(hspace=0.6, wspace=0.3)
# 图形显示
plt.show()
总结
数据可视化工具
1.matplotlib
2.seaborn
3.echarts/highcharts
pandas补充(其二)与matplotlib补充的更多相关文章
- matplotlib补充知识及数据清理方法
今日内容概要 数据操作 数据清洗理论 数据清洗实操 数据操作 read_csv read_excel read_hdf read_html read_json read_msgpack read_sq ...
- 数据分析处理库pandas及可视化库Matplotlib
一.读取文件 1)读取文件内容 import pandas info = pandas.read_csv('1.csv',encoding='gbk') # 获取文件信息 print(info) pr ...
- numpy、pandas、scipy、matplotlib、jieba、 openpyxl、pillow的安装
cmd环境下进入python安装包里的Script文件夹 安装numpy 安装pandas 安装scipy 安装matplotlib 安装jieba(应该是之前装的库安装依赖时下载了) 安装openp ...
- 推荐:python科学计算pandas/python画图库matplotlib【转】
机器学习基础3--python科学计算pandas(上) 地址:https://wangyeming.github.io/2018/09/04/marchine-learning-base-panda ...
- 用豆瓣加速安装pandas、numpy、matplotlib(画图)
安装pandas.numpy会同时被安装 #pthony2.x,用豆瓣加速安装pandas pip install -i https://pypi.doubanio.com/simple/ panda ...
- Java GUI界面补充总结(不定期补充)
一.Java中如何设置各类组件透明 感谢原文:https://kslsi.iteye.com/blog/2096608 补充:Frame透明:AWTUtilities.setWindowOpacity ...
- Android 布局的一些控件的补充和布局的补充(今儿没课)
前面写的博客可能会有点乱: 1,是不太会排版. 2,就是我一边看书,一边听学长讲课,所以有的知识就融入进去了,我写的都是自己的意见和理解,大家取我精华,弃我糟粕哈. 今天是书上的内容,主要讲布局的,一 ...
- pandas模块补充
数据分析模块pandas和matplotlib补充 面向百度式编程 面向百度式工作 遇到没有见过的知识点或者是相关知识点一定不要慌,结合百度和已知的知识点去学习 pandas模块补充 基于numpy构 ...
- 数据可视化实例(七): 计数图(matplotlib,pandas)
https://datawhalechina.github.io/pms50/#/chapter5/chapter5 计数图 (Counts Plot) 避免点重叠问题的另一个选择是增加点的大小,这取 ...
随机推荐
- Nginx怎么处理请求的?
nginx接收一个请求后,首先由listen和server_name指令匹配server模块,再匹配server模块里的 location,location就是实际地址. server { # 第 ...
- python17day
昨日回顾 自定义模块等 今日内容 自定义模块 模块是什么? 抖音:20万行代码全部放在一个py文件? 为什么不行? 代码多,读取时间长 代码不容易维护 所以应该? 一个py文件拆分100个文件,100 ...
- jsp 中的绝对路径和相对路径 ./ 和 ../的区别?
原文地址! https://www.cnblogs.com/brucetie/p/4109913.html 1. 相对路径 相对路径,当前的文件,以根目录为基准,相对于另一个文件的位置. 2.绝对路径 ...
- Heartbeat部署
部署环境:CentOS 7 1.Heartbeat介绍 Heartbeat是Linux-HA项目中的一个组件,它实现了一个高可用集群系统.心跳检测和集群通信是高可用的两个关键组件,在Heartbeat ...
- 使用 Element UI Select 组件的 value-key 属性,让绑定值可以为一个对象
EsunR 2019-11-07 12:14:42 12264 收藏 6 分类专栏: Vue 文章标签: element-ui 版权 当我们使用 Elemet UI 的选择组件进行多选时,Sele ...
- Zookeeper、Kafka集群与Filebeat+Kafka+ELK架构
Zookeeper.Kafka集群与Filebeat+Kafka+ELK架构 目录 Zookeeper.Kafka集群与Filebeat+Kafka+ELK架构 一.Zookeeper 1. Zook ...
- 大话devops
一.敏捷的局限性的促使devops诞生 敏捷的局限性:敏捷只注重开发阶段的敏捷,未涉及到整个产品生命周期流程其他环节导致采用敏捷开发流程后效果不明显. devops成为企业数字化转型的助推器,扮演基础 ...
- SpringBoot自动配置的魔法
Spring自动配置 从@SpringBootApplication注解说起 SpringBoot会根据类路径下的类自动配置,省去了编写繁琐的xml配置文件.原本基于xml配置bean的方式编程基于J ...
- 01网络编程(基础知识+OSI七层协议+TCP与UDP)
目录 01 网络编程 一.软件开发架构 1.1 CS架构 1.2 BS架构 二.网络理论前戏 2.1 简介 2.2 常见硬件 三.OSI七层协议(五层) 3.1 七层协议 3.2 五层协议 3.3 知 ...
- [Java]Java入门笔记(三):类、对象和方法
七.类.对象和方法 类和对象的关系 类定义了对象的本质: 类(class)是对象(object)的模板,而对象(object)是类的一个实例(instance). 使多个对象的指向相同: Studen ...