今天看到原来下载的tf源码的目标检测源码中test的代码不知道跑哪儿去了,这里记录一下。。。

Imports

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image # This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from utils import ops as utils_ops if tf.__version__ < '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
# This is needed to display the images.
%matplotlib inline

Object detection imports

Here are the imports from the object detection module.

from utils import label_map_util

from utils import visualization_utils as vis_util

Model preparation

Variables

Any model exported using the export_inference_graph.py tool can be loaded here simply by changing PATH_TO_CKPT to point to a new .pb file.

By default we use an "SSD with Mobilenet" model here. See the detection model zoo for a list of other models that can be run out-of-the-box with varying speeds and accuracies.

:
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' # Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 90

Download Model

opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())

Load a (frozen) Tensorflow model into memory.

detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')

Loading label map

Label maps map indices to category names, so that when our convolution network predicts 5, we know that this corresponds to airplane. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

Helper code

def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)

Detection

# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ] # Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0') # Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)}) # all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)

总结:实际测试的时候多使用glob模块(或os)读文件,opencv(+矩形框)展示检测效果。

tf源码中的object_detection_tutorial.ipynb文件的更多相关文章

  1. Android源码分析(十一)-----Android源码中如何引用aar文件

    一:aar文件如何引用 系统Settings中引用bidehelper-1.1.12.aar 文件为例 源码地址:packages/apps/Settings/Android.mk LOCAL_PAT ...

  2. The Independent JPEG Group's JPEG software Android源码中 JPEG的ReadMe文件

    The Independent JPEG Group's JPEG software========================================== README for rele ...

  3. angular源码分析:injector.js文件分析——angular中的依赖注入式如何实现的(续)

    昨天晚上写完angular源码分析:angular中jqLite的实现--你可以丢掉jQuery了,给今天定了一个题angular源码分析:injector.js文件,以及angular的加载流程,但 ...

  4. Python3.4 获取百度网页源码并保存在本地文件中

    最近学习python 版本 3.4 抓取网页源码并且保存在本地文件中 import urllib.request url='http://www.baidu.com' #上面的url一定要写明确,如果 ...

  5. 从express源码中探析其路由机制

    引言 在web开发中,一个简化的处理流程就是:客户端发起请求,然后服务端进行处理,最后返回相关数据.不管对于哪种语言哪种框架,除去细节的处理,简化后的模型都是一样的.客户端要发起请求,首先需要一个标识 ...

  6. Android 网络框架之Retrofit2使用详解及从源码中解析原理

    就目前来说Retrofit2使用的已相当的广泛,那么我们先来了解下两个问题: 1 . 什么是Retrofit? Retrofit是针对于Android/Java的.基于okHttp的.一种轻量级且安全 ...

  7. Eclipse与Android源码中ProGuard工具的使用

    由于工作需要,这两天和同事在研究android下面的ProGuard工具的使用,通过查看android官网对该工具的介绍以及网络上其它相关资料,再加上自己的亲手实践,算是有了一个基本了解.下面将自己的 ...

  8. 关于android源码中的APP编译时引用隐藏的API出现的问题

    今天在编译android源码中的计算器APP时发现,竟然无法使用系统隐藏的API,比如android.os.ServiceManager中的API,引用这个类时提示错误,记忆中在android源码中的 ...

  9. wemall app商城源码中android按钮的三种响应事件

    wemall-mobile是基于WeMall的android app商城,只需要在原商城目录下上传接口文件即可完成服务端的配置,客户端可定制修改.本文分享wemall app商城源码中android按 ...

随机推荐

  1. 资本主义反抗指南精要(v0.1)

    (1)充分预估工作时间,比如一小时的开发任务,你可以加上技术调研,API/数据库设计,单元测试,联调,集成测试等等,拖到一天,同理一天的任务可以拖到一星期. (2)简历上尽一切手段来美化,最好能包装成 ...

  2. 「JOISC 2016 Day 1」棋盘游戏

    「JOISC 2016 Day 1」棋盘游戏 先判无解:第1,3行有连续的空格或四个角有空格. 然后可以发现有解的情况第1,3行可以在任意时间摆放. 对于某一列,若第2行放有棋子,那么显然可以把棋盘分 ...

  3. homestead 入坑安装

    1.在使用 Homestead 之前,需要先安装 Virtual Box.VMWare.Parallels 或 Hyper-V (四选一,我们通常选择 VirtualBox,因为只有它是免费的)以及  ...

  4. Swift 学习网址精选 By HL

    虽然目前iOS大部分的项目开发语言用的不是Swift,但随着Swift的不断强大,取代Objective-C 指日可待,所以学习Swift是十分必要的.但毕竟是亲儿子,目前只有Foundation被翻 ...

  5. yum本地源仓库安装报错 被锁定如何解决?

    yum安装报错被锁定如何解决 上图!!!!!如图的报错 解决方法: 是不是很简单 智商在地上摩擦~~~

  6. JQgrid实现全表单元格编辑

    1 jQuery("#baseWageDataValueGrid").jqGrid('setGridParam',{'cellEdit':true}); 2 3 //修改所有td ...

  7. Redis 学习笔记(五)高可用之主从模式

    上一节提到了 Redis 的持久性,也就是在服务器实例宕机或故障时,拥有再恢复的能力.但是在这个服务器实例宕机恢复期间,是无法接受新的数据请求.对于整体服务而言这是无法容忍的,因此我们可以使用多个服务 ...

  8. jquery.form 兼容IE89文件上传

    导入部分 <script type="text/javascript" src="js/jquery-1.8.3.min.js" charset=&quo ...

  9. async同步异步

    1.同步:var async = require("async"); async.series([step1, step2, step3],function(err, values ...

  10. Linux运维-常用操作-培训用例

    一.服务器环境 Centos 7.9 二.常用连接工具(免费) 1.Finalshell 2.MobaXterm 3.Putty + WinSCP 三.Linux  系统目录结构 /bin :是 Bi ...