Class Activation Mapping (CAM)
概
CAM (class activation mapping) 是一种非常实用的可视化方法, 同时在弱监督学习中(如VQA)起了举足轻重的作用.
主要内容
CAM的概念, 用于解释, 为什么神经网络能够这么有效, 而它究竟关注了什么?
符号 | 说明 |
---|---|
\(f(\cdot)\) | 网络 |
\(X\) | 网络输入 |
\(A_l^k\) | 第\(l\)层的第\(k\)张特征图(特指在卷积层中) |
\(w\) | 权重 |
\(c\) | 所关心的类别 |
\(\alpha\) | 用于CAM的权重 |
CAM
最开始的CAM仅用于特殊的CNN: 卷积层 + AvgPool + FC的结构,
设最后一层卷积层的特征图为\(A_L\), 则
\]
进一步可以注意到,
\]
于是可以定义:
\]
这里, \(\alpha = \frac{w}{HW}\).
即
\]
一般, 这种score会最后加个relu:
\]
Grad-CAM
普通的CAM有限制, Grad-CAM在此基础上进行扩展.
\]
\]
注意: \(L \rightarrow l\).
Grad-CAM++
作者认为, Grad-CAM++不能很好应对多个目标的情况, 应该进一步加权:
\]
\]
Score-CAM
作者认为, 利用梯度计算score并不是一个很好的主意.
\]
这里\(X_b\)是一个固定的基准向量, 作者直接取\(f(X_b)=\mathbb{0}\),
\]
为将\(A_l^k\)上采样至和\(X\)相同大小, 并标准化:
\]
使其落于\([0, 1]\).
最后
\(L^c_*\)最后也只是\(H\times W\)的, 需要上采样到和\(X\)一样的大小.
代码
Class Activation Mapping (CAM)的更多相关文章
- pytorch中网络特征图(feture map)、卷积核权重、卷积核最匹配样本、类别激活图(Class Activation Map/CAM)、网络结构的可视化方法
目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视 ...
- grad-cam 、cam 和热力图,基于keras的实现
http://bindog.github.io/blog/2018/02/10/model-explanation/ http://www.sohu.com/a/216216094_473283 ht ...
- 在CNN上增加一层CAM告诉你CNN到底关注什么
Cam(Class Activation Mapping)是一个很有意思的算法,他能够将神经网络到底在关注什么可视化的表现出来.但同时它的实现却又如此简介,相比NIN,googLenet这些使用GAP ...
- 凭什么相信你,我的CNN模型
背景 学术界一直困惑的点是"如何让看似黑盒的CNN模型说话",即对它的分类结果给出解释. 这里的解释是指,让模型告诉我们它是通过图片的哪些像素做出判断的,并不是深度学习理论层面的解 ...
- [Kaggle] How to handle big data?
上一篇,[Kaggle] How to kaggle?[方法导论] 这里再做一点进阶学习. 写在前面 "行业特征" 的重要性 Ref: Kaggle2017—1百万美金的肺癌检测竞 ...
- 化繁为简,弱监督目标定位领域的新SOTA - 伪监督目标定位方法(PSOL) | CVPR 2020
论文提出伪监督目标定位方法(PSOL)来解决目前弱监督目标定位方法的问题,该方法将定位与分类分开成两个独立的网络,然后在训练集上使用Deep descriptor transformation(DDT ...
- 卷积网络可解释性复现 | Grad-CAM | ICCV | 2017
觉得本文不错的可以点个赞.有问题联系作者微信cyx645016617,之后主要转战公众号,不在博客园和CSDN更新. 论文名称:"Grad-CAM: Visual Explanations ...
- Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization
目录 Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization 1.Abstract 2.Intr ...
- Res2net:多尺度骨干网络结构
<Res2Net: A New Multi-scale Backbone Architecture> 来自:南开大学程明明组 论文:https://arxiv.org/abs/1904.0 ...
随机推荐
- 游戏案例|Service Mesh 在欢乐游戏的应用演变和实践
作者 陈智伟,腾讯 12 级后台专家工程师,现负责欢乐游戏工作室公共后台技术研发以及团队管理工作.在微服务分布式架构以及游戏后台运维研发有丰富的经验. 前言 欢乐游戏工作室后台是分布式微服务架构,目前 ...
- A Child's History of England.6
It was a British Prince named Vortigern who took this resolution, and who made a treaty of friendshi ...
- 大数据学习day33----spark13-----1.两种方式管理偏移量并将偏移量写入redis 2. MySQL事务的测试 3.利用MySQL事务实现数据统计的ExactlyOnce(sql语句中出现相同key时如何进行累加(此处时出现相同的单词))4 将数据写入kafka
1.两种方式管理偏移量并将偏移量写入redis (1)第一种:rdd的形式 一般是使用这种直连的方式,但其缺点是没法调用一些更加高级的api,如窗口操作.如果想更加精确的控制偏移量,就使用这种方式 代 ...
- mysql_取分组后的前几行值
--方法一: select a.id,a.SName,a.ClsNo,a.Score from Table1 a left join Table1 b on a.ClsNo=b.ClsNo and a ...
- zabbix之监控 io
#:编写监控脚本 root@ubuntu:/etc/zabbix/zabbix_agentd.conf.d# vim iotop_total.sh #!/bin/bash #Date: 2016/11 ...
- 【Spring Framework】12种spring中定义bean的方法
前言 在庞大的java体系中,spring有着举足轻重的地位,它给每位开发者带来了极大的便利和惊喜.我们都知道spring是创建和管理bean的工厂,它提供了多种定义bean的方式,能够满足我们日常工 ...
- MFC入门示例之树控件(CTreeControl)
1 //增加按钮 2 void CMFCApplication8Dlg::OnBnClickedButtonAdd() 3 { 4 //树中添加节点 5 CString strText; 6 GetD ...
- 机器学习——可视化绘图matplotlib和seaborn
安装matplotlib和seaborn https://blog.csdn.net/Jia_jinjin/article/details/80428598 seaborn pairplot:特征两两 ...
- 【HarmonyOS】【Json解析】ZSON 与 HiJson 使用
HiLog配置 为了方便调试,查看,先设置好Hilog public static final HiLogLabel loglabel = new HiLogLabel(HiLog.LOG_APP,0 ...
- Rust开发环境搭建和hello world工程
windows10 WSL 打开wsl,执行以下命令 curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh 出现安装选项,选择1 ...