He K, Zhang X, Ren S, et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification[C]. international conference on computer vision, 2015: 1026-1034.

@article{he2015delving,

title={Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification},

author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},

pages={1026--1034},

year={2015}}

本文介绍了一种PReLU的激活函数和Kaiming的参数初始化方法.

主要内容

PReLU

\[f(y_i) =
\left \{ \begin{array}{ll}
y_i, & y_i >0, \\
a_i y_i, & y_i \le 0.
\end{array} \right.
\]

其中\(a_i\)是作为网络的参数进行训练的.

等价于

\[f(y_i)=\max(0, y_i) + a_i \min (0,y_i).
\]

特别的, 可以一层的节点都用同一个\(a\).

Kaiming 初始化

Forward case

\[\mathbf{y}_l=W_l\mathbf{x}_l+\mathbf{b}_l,
\]

在卷积层中时, \(\mathbf{x}_l\)是\(k\times k \times c\)的展开, 故\(\mathrm{x}_l\in \mathbb{R}^{k^2c}\), 而\(\mathbf{y}_l \in \mathbb{R}^{d}\), \(W_l \in \mathbb{R^{d \times k^2c}}\)(每一行都可以视作一个kernel), 并记\(n=k^2c\).

\[\mathbf{x}_l=f(\mathbf{y}_{l-1}),
\]

\[c_l = d_{l-1}.
\]

假设\(w_l\)与\(x_l\)(注意没粗体, 表示\(\mathbf{w}_l, \mathbf{x}_l\)中的某个元素)相互独立, 且\(w_l\)采样自一个均值为0的对称分布之中.

\[Var[y_l] = n_l Var [w_lx_l] = n_lVar[w_l]E[x_l^2],
\]

除非\(E[x_l]=0\), \(Var[y_l] = n_lVar[w_l]Var[x_l]\), 但对于ReLu, 或者 PReLU来说这个性质是不成立的.

如果我们令\(b_{l-1}=0\), 易证

\[E[x_l^2] = \frac{1}{2} Var[y_{l-1}],
\]

其中\(f\)是ReLU, 若\(f\)是PReLU,

\[E[x_l^2] = \frac{1+a^2}{2} Var[y_{l-1}].
\]

下面用ReLU分析, PReLU是类似的.

\[Var[y_l] = \frac{1}{2} n_l ar[w_l]Var[y_{l-1}],
\]

自然我们希望

\[Var[y_i]=Var[y_j] \Rightarrow \frac{1}{2}n_l Var[w_l]=1, \forall l.
\]

Backward case

\[\tag{13}
\Delta \mathbf{x}_l = \hat{W}_l \Delta \mathbf{y}_l,
\]

\(\Delta \mathbf{x}_l\)表示损失函数观念与\(\mathbf{x}_l\)的导数, 这里的\(\mathbf{y}_l\)与之前提到的\(\mathbf{y}_l\)有出入, 这里需要用到卷积的梯度回传, 三言两语讲不清, \(\hat{W}_l\)是\(W_l\)的一个重排.

因为\(\mathbf{x}_l=f(\mathbf{y}_{l-1})\), 所以

\[\Delta y_l = f'(y_l) \Delta x_{l+1}.
\]

假设\(f'(y_l)\)与\(\Delta x_{l+1}\)相互独立, 所以

\[E[\Delta y_l]=E[f'(y_l)] E[\Delta x_{l+1}] = 0,
\]

若\(f\)为ReLU:

\[E[(\Delta y_l)^2] = Var[\Delta y_l] = \frac{1}{2}Var[\Delta x_{l+1}].
\]

若\(f\)为PReLU:

\[E[(\Delta y_l)^2] = Var[\Delta y_l] = \frac{1+a^2}{2}Var[\Delta x_{l+1}].
\]

下面以\(f\)为ReLU为例, PReLU类似

\[Var[\Delta x_l] = \hat{n}_l Var[w_l] Var[\Delta y_l] = \frac{1}{2} \hat{n}_l Var[w_l] Var[\Delta x_{l+1}],
\]

这里\(\hat{n}_l=k^2d\)为\(\mathbf{y}_l\)的长度.

和前向的一样, 我们希望\(Var[\Delta x_l]\)一样, 需要

\[\frac{1}{2}\hat{n}_l Var[w_l]=1, \forall l.
\]

是实际中,我们前向后向可以任选一个(因为误差不会累积).

[Kaiming]Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification的更多相关文章

  1. 微软亚洲实验室一篇超过人类识别率的论文:Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification ImageNet Classification

    在该文章的两大创新点:一个是PReLU,一个是权值初始化的方法.下面我们分别一一来看. PReLU(paramter ReLU) 所谓的PRelu,即在 ReLU激活函数的基础上加入了一个参数,看一个 ...

  2. PReLU——Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

    1. 摘要 在 \(ReLU\) 的基础上作者提出了 \(PReLU\),在几乎没有增加额外参数的前提下既可以提升模型的拟合能力,又能减小过拟合风险. 针对 \(ReLU/PReLU\) 的矫正非线性 ...

  3. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  4. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  5. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  6. C++ Low level performance optimize 2

    C++ Low level performance optimize 2 上一篇 文章讨论了一些底层代码的优化技巧,本文继续讨论一些相关的内容. 首先,上一篇文章讨论cache missing的重要性 ...

  7. C++ Low level performance optimize

    C++ Low level performance optimize 1.  May I have 1 bit ? 下面两段代码,哪一个占用空间更少,那个速度更快?思考10秒再继续往下看:) //v1 ...

  8. [notes] ImageNet Classification with Deep Convolutional Neual Network

    Paper: ImageNet Classification with Deep Convolutional Neual Network Achievements: The model address ...

  9. ImageNet Classification with Deep Convolutional Neural Networks(译文)转载

    ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...

随机推荐

  1. Z可读作zed的出处?

    Commercial and international telephone and radiotelephone SPELLING ALPHABETS between World War I and ...

  2. A Child's History of England.38

    CHAPTER 12 ENGLAND UNDER HENRY THE SECOND PART THE FIRST Henry Plantagenet, when he was but [only] t ...

  3. day07 ORM中常用字段和参数

    day07 ORM中常用字段和参数 今日内容 常用字段 关联字段 测试环境准备 查询关键字 查看ORM内部SQL语句 神奇的双下划线查询 多表查询前提准备 常用字段 字段类型 AutoField in ...

  4. ASP.NET Core中使用固定窗口限流

    算法原理 固定窗口算法又称计数器算法,是一种简单的限流算法.在单位时间内设定一个阈值和一个计数值,每收到一个请求则计数值加一,如果计数值超过阈值则触发限流,如果达不到则请求正常处理,进入下一个单位时间 ...

  5. 大数据学习day13------第三阶段----scala01-----函数式编程。scala以及IDEA的安装,变量的定义,条件表达式,for循环(守卫模式,推导式,可变参数以及三种遍历方式),方法定义,数组以及集合(可变和非可变),数组中常用的方法

    具体见第三阶段scala-day01中的文档(scala编程基础---基础语法)  1. 函数式编程(https://www.cnblogs.com/wchukai/p/5651185.html): ...

  6. java打jar包和运行jar包的两种方式

    java打jar包和运行jar包的两种方式更详细的打包方式请参考https://www.cnblogs.com/mq0036/p/8566427.html 一.java类不依赖第三方jar包以简单的一 ...

  7. ORACLE中dual用法详解

    基本上oracle引入dual为的就是符合语法1. 我们先从名称来说,dual不是缩写词,本身就是完整的单词.dual名词意思是对数,做形容词时是指二重的,二元的.2. Oracle中的dual表是一 ...

  8. 【分布式】Zookeeper伪集群安装部署

    zookeeper:伪集群安装部署 只有一台linux主机,但却想要模拟搭建一套zookeeper集群的环境.可以使用伪集群模式来搭建.伪集群模式本质上就是在一个linux操作系统里面启动多个zook ...

  9. SpringBoot(2):运行原理

    一. pom.xml 进入父项目,这里才是真正管理SpringBoot应用里面所有依赖版本的地方,SpringBoot的版本控制中心:以后我们导入依赖默认是不需要写版本:但是如果导入的包没有在依赖中管 ...

  10. 30个类手写Spring核心原理之Ioc顶层架构设计(2)

    本文节选自<Spring 5核心原理> 1 Annotation(自定义配置)模块 Annotation的代码实现我们还是沿用Mini版本的,保持不变,复制过来便可. 1.1 @GPSer ...