随着网络越来约复杂,训练难度越来越大,有条件的可以采用GPU进行学习。本文介绍如何在GPU环境下使用TensorFlow.NET。

TensorFlow.NET使用GPU非常的简单,代码不用做任何修改,更换一个依赖库即可,程序是否能运行成功主要看环境是否安装正确,这篇文章重点介绍的也就是环境的安装了。

CUDA和cuDNN的安装都比较容易,重点是要装对版本。

1、确认安装版本

首先电脑得有一块NVIDIA的显卡!

在桌面右键选择NVIDIA控制面板,在程序左下角点击 :系统信息。

首先要确认显卡CUDA的版本,我的是10.1,实际安装时要根据自己的环境来。

根据显卡CUDA版本,需要安装对应的CUDA Toolkit和cuDNN的包,同时也要引用对应版本的TensorFlow_gpu运行库。

这是TensorFlow官方网站提供的一个对应关系。

2、安装CUDA Toolkit

安装包下载地址:CUDA Toolkit 11.5 Update 1 Downloads | NVIDIA Developer

由于不可描述的原因,网站打开很慢,需要有一定的耐心。

我下载的程序为:cuda_10.1.243_win10_network.exe,要保证前两个版本号和本机显卡的CUDA版本一致,最后一位影响不大。

只要选对版本,安装就没有问题了,基本一路下一步就可以了。

3、安装cuDNN

在NVIDIA网站搜索cuDNN即可找到下载地址,同样要注意版本。

我下载的文件为:cudnn-10.1-windows10-x64-v8.0.5.39.zip

从文件名可以看出,该软件版本为8.0,对应的CUDA版本为10.1,这点和TensonFlow网站上说的不完全一致,但实测可以使用。

注意cuDNN软件不需要安装,只要解压到指定目录即可。

假设CUDA安装目录为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\V10.1

解压后的文件包括:bin、inclue、lib三个文件夹,和CUDA安装目录下的三个同名文件夹合并即可。

【我怀疑随便解压到什么位置,只要把路径加入到path里即可,但我没有测试过。】

4、更换依赖库

本系列第一篇就介绍过一个TensorFlow,NET项目的依赖库如下:

如果需要采用GPU学习,更改其中的一个库如下即可。

需要注意运行库的版本。我的GPU最高支持2.3

如果此时你的运行环境没有具备,程序运行时会弹出警告,并自动切换到CPU进行计算。

5、调试

如果环境没有安装成功,程序运行会打印下列信息:

2021-08-29 09:46:26.631756: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2021-08-29 09:46:26.633225: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2021-08-29 09:46:27.323608: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-08-29 09:46:27.993386: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2021-08-29 09:46:27.994493: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cublas64_11.dll'; dlerror: cublas64_11.dll not found
2021-08-29 09:46:27.997410: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cufft64_10.dll'; dlerror: cufft64_10.dll not found
2021-08-29 09:46:27.998498: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'curand64_10.dll'; dlerror: curand64_10.dll not found
2021-08-29 09:46:27.999403: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cusolver64_11.dll'; dlerror: cusolver64_11.dll not found
2021-08-29 09:46:28.000402: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cusparse64_11.dll'; dlerror: cusparse64_11.dll not found
2021-08-29 09:46:28.001807: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudnn64_8.dll'; dlerror: cudnn64_8.dll not found
2021-08-29 09:46:28.001917: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1835] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...

关键字:Could not load dynamic library

 

如果环境安装成功,则显示如下:

2021-08-29 09:46:26.631756: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2021-08-29 09:46:26.633225: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2021-08-29 09:46:27.323608: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-08-29 09:46:27.993386: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2021-08-29 09:46:27.994493: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cublas64_11.dll'; dlerror: cublas64_11.dll not found
2021-08-29 09:46:27.997410: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cufft64_10.dll'; dlerror: cufft64_10.dll not found
2021-08-29 09:46:27.998498: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'curand64_10.dll'; dlerror: curand64_10.dll not found
2021-08-29 09:46:27.999403: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cusolver64_11.dll'; dlerror: cusolver64_11.dll not found
2021-08-29 09:46:28.000402: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cusparse64_11.dll'; dlerror: cusparse64_11.dll not found
2021-08-29 09:46:28.001807: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudnn64_8.dll'; dlerror: cudnn64_8.dll not found
2021-08-29 09:46:28.001917: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1835] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...

关键字:Successfully opened dynamic library

【相关资源】

源码:Git: https://gitee.com/seabluescn/tf_not.git

目录:查看TensorFlow.NET机器学习入门系列目录

TensorFlow.NET机器学习入门【8】采用GPU进行学习的更多相关文章

  1. TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归

    上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出. 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量 ...

  2. TensorFlow.NET机器学习入门【4】采用神经网络处理分类问题

    上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类的问题. 这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三 ...

  3. TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)

    从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...

  4. TensorFlow.NET机器学习入门【6】采用神经网络处理Fashion-MNIST

    "如果一个算法在MNIST上不work,那么它就根本没法用:而如果它在MNIST上work,它在其他数据上也可能不work". -- 马克吐温 上一篇文章我们实现了一个MNIST手 ...

  5. TensorFlow.NET机器学习入门【7】采用卷积神经网络(CNN)处理Fashion-MNIST

    本文将介绍如何采用卷积神经网络(CNN)来处理Fashion-MNIST数据集. 程序流程如下: 1.准备样本数据 2.构建卷积神经网络模型 3.网络学习(训练) 4.消费.测试 除了网络模型的构建, ...

  6. TensorFlow.NET机器学习入门【0】前言与目录

    曾经学习过一段时间ML.NET的知识,ML.NET是微软提供的一套机器学习框架,相对于其他的一些机器学习框架,ML.NET侧重于消费现有的网络模型,不太好自定义自己的网络模型,底层实现也做了高度封装. ...

  7. TensorFlow.NET机器学习入门【1】开发环境与类型简介

    项目开发环境为Visual Studio 2019 + .Net 5 创建新项目后首先通过Nuget引入相关包: SciSharp.TensorFlow.Redist是Google提供的TensorF ...

  8. TensorFlow.NET机器学习入门【2】线性回归

    回归分析用于分析输入变量和输出变量之间的一种关系,其中线性回归是最简单的一种. 设: Y=wX+b,现已知一组X(输入)和Y(输出)的值,要求出w和b的值. 举个例子:快年底了,销售部门要发年终奖了, ...

  9. 45、Docker 加 tensorflow的机器学习入门初步

    [1]最近领导天天在群里发一些机器学习的链接,搞得好像我们真的要搞机器学习似的,吃瓜群众感觉好神奇呀. 第一步 其实也是最后一步,就是网上百度一下,Docker Toolbox,下载下来,下载,安装之 ...

随机推荐

  1. Centos7部署RabbitMQ的镜像队列集群

    一.背景 在上一章节中,我们学会了如何搭建一个单节点的RabbitMQ服务器,但是单节点的RabbitMQ不可靠,如果单节点挂掉,则会导致消息队列不可用.此处我们搭建一个3个节点的RabbitMQ集群 ...

  2. A Child's History of England.36

    CHAPTER 11 ENGLAND UNDER MATILDA AND STEPHEN The King was no sooner dead than all the plans and sche ...

  3. Spring同一个类中的注解方法调用AOP失效问题总结

    public interface XxxService { // a -> b void a(); void b(); } @Slf4j public class XxxServiceImpl ...

  4. SpringMVC原理分析

    Spring MVC主要包括以下要点: 1:由DispatcherServlet控制的整个流程: 2:注解驱动的控制器,其中包括请求映射.数据的绑定和格式化: 3:文件上传: 4:一些杂项,如静态资源 ...

  5. 【Linux】【Services】【SaaS】Docker+kubernetes(10. 利用反向代理实现服务高可用)

    1. 简介 1.1. 由于K8S并没有自己的集群,所以需要借助其他软件来实现,公司的生产环境使用的是Nginx,想要支持TCP转发要额外安装模块,测试环境中我就使用HAPROXY了 1.2. 由于是做 ...

  6. python数据预处理和特性选择后列的映射

    我们在用python进行机器学习建模时,首先需要对数据进行预处理然后进行特征工程,在这些过程中,数据的格式可能会发生变化,前几天我遇到过的问题就是: 对数据进行标准化.归一化.方差过滤的时候数据都从D ...

  7. shell脚本 binlog方式增量备份mysql

    一.简介 源码地址 日期:2018/4/12 介绍:复制Binlog日志方式的增量备份脚本,并保存固定天数的备份 效果图: 二.使用 适用:centos6+ 语言:中文 注意:使用前先修改脚本中变量 ...

  8. tableau添加参考线

    一.将数据窗口切换至分析窗口-点击自定义-参考线 二.出现编辑参考线和参考区间的界面(整个表指的是整个视图,每区指的是如下2018就是一个区,每单元格指的是横轴的最小值) 三.我们分别为每区添加最大值 ...

  9. java多线程8:阻塞队列与Fork/Join框架

    队列(Queue),是一种数据结构.除了优先级队列和LIFO队列外,队列都是以FIFO(先进先出)的方式对各个元素进行排序的. BlockingQueue 而阻塞队列BlockingQueue除了继承 ...

  10. Linux中find命令与三剑客之grep和正则

    昨日内容回顾 1.每个月的3号.5号和15号,且这天时周六时 执行 00 00 3,5,15 * 6 2.每天的3点到15点,每隔3分钟执行一次 */3 3-15 * * * 3.每周六早上2点半执行 ...