AT2272 [ARC066B] Xor Sum
我们可以知道异或可以看成不进位的加法,那么我们就可以得到 \(a + b = a\) ^ \(b + ((a \& b) << 1)\),不难发现 \(\frac{v - u}{2}\) 就是 \(a \& b\) 也就是 \(a, b\) 中同时为 \(1\) 的位置,那么只需要满足 \(\frac{v - u}{2} \& u = 0\) 且 \((i - j) \% 2 = 0\)我们就能合理分配 \(a, b\) 的 \(0 / 1\) 使得 \(u, v\) 能够被表示出来。于是我开始从 \(u, v\) 的判定条件入手,枚举 \(u\) 然后可以从最高位往下做一个 \(dp\) 这样就可以做到 \(O(n \log n)\) 但想了很久都没办法继续优化下去了。
当我们陷入死胡同的时候,不妨走出来换一个方向再继续。因为 \(a + b = v \le n\) 因此我们可以直接考虑枚举这样的 \((a, b)\) 来判定哪些 \((u, v)\) 是合法的,于是我们有了这样一个想法,我们能否将问题转化成统计一些合法的 \((a, b)\) 以知道 \((u, v)\) 的数量呢?实际上我们可以考虑一对合法的 \((u, v)\) 可以被那些 \((a, b)\) 表示出来,我们单独考虑 \(u\) 的二进制位,如果这个位置上是 \(1\) 那么就表示 \(a, b\) 在这一位上有一个是 \(1\) 另一个是 \(0\),如果是 \(u\) 在这一位上是 \(0\) 就表示 \((a, b)\) 在这一位上要么都是 \(1\) 要么都是 \(0\),可以发现因为 \(a + b = v\) 是确定的,因此都是 \(1\) 和都是 \(0\) 的位置是确定的,那么同一对 \((u, v)\) 能被不同的 \((a, b)\) 表示出来当且仅当 \((a, b)\) 在某一位上一个是 \(1\) 一个是 \(0\),因此我们在统计这样 \((a, b)\) 时可以钦定 \(a\) 的每一位都不大于 \(b\),这样就能不重不漏地统计完所有答案了。
于是原问题被我们转化为,统计二元组 \((a, b)\) 的数量满足 \(0 \le a \le b \le n, a + b \le n\) 且在二进制位下 \(a\) 的每一位都不大于 \(b\)。于是我们可以考虑令 \(dp_i\) 表示 \(a + b \le i\) 的合法二元组数量,因为要满足二进制位下 \(a\) 的每一位不大于 \(b\),因此我们在考虑往 \(a, b\) 末尾同时加入一个数时只可能是 \((0, 0) / (0, 1) / (1, 1)\),对应着转移就是 \(dp_i = dp_{\lfloor \frac{i}{2} \rfloor} + dp_{\lfloor \frac{i - 1}{2} \rfloor} + dp_{\lfloor \frac{i - 2}{2} \rfloor}\)。可以用记忆化搜索实现这个过程,可以发现每次往下递归时要求的 \(dp\) 值实际上只有两个,如果 \(i = 2k + 1\) 且 \(k\) 为奇数时我们恰好发现下面需要求的 \(dp\) 值又只有一边,如果 \(k\) 为偶数可以发现最多经过 \(\log n\) 次就会变成 \(k\) 为奇数的情况,而每次除了 \(\frac{k}{2}\) 的部分最多往下多算两次,而最开始 \(i = 2k\) 时与这里类似,因此我们有效的合法状态大约是 \(O(3 \log n)\) 的,实际上效率非常高,有效状态在 \(O(2 \log n) \sim O(3 \log n)\) 之间。
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define Mod 1000000007
#define rep(i, l, r) for(int i = l; i <= r; ++i)
int n, cnt;
unordered_map <int, int> dp;
int read(){
char c; int x = 0, f = 1;
c = getchar();
while(c > '9' || c < '0'){ if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int Inc(int a, int b){
return (a += b) >= Mod ? a - Mod : a;
}
int dfs(int n){
if(dp[n]) return dp[n];
return dp[n] = Inc(Inc(dfs(n / 2), dfs((n - 1) / 2)), dfs((n - 2) / 2));
}
signed main(){
n = read(), dp[0] = 1, dp[1] = 2;
printf("%lld\n", dfs(n));
return 0;
}
可以发现因为是递推式,其实我们可以打表看出规律,但这个递推式有点刁钻,也可能是我太弱了吧。以后这种二进制下满足某种条件的数的个数递推式可以考虑在 \(\lfloor \frac{i}{2} \rfloor\) 附近的值考虑。
AT2272 [ARC066B] Xor Sum的更多相关文章
- AT2272 [ARC066B] Xor Sum 题解
题目连接:传送门 分析 这道题只看题目中给的样例是找不出规律的 所以我们可以打一下表 1, 2, 4, 5, 8, 10, 13, 14, 18 如果你还是没有看出什么规律的话,我们可以从OEIS上搜 ...
- HDU 4825 Xor Sum(经典01字典树+贪心)
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Total ...
- 字典树-百度之星-Xor Sum
Xor Sum Problem Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包括了N个正整数,随后 Prometheu ...
- HDU 4825 Xor Sum 字典树+位运算
点击打开链接 Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) ...
- 2014百度之星第三题Xor Sum(字典树+异或运算)
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Total ...
- Xor Sum 01字典树 hdu4825
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)Total S ...
- hdu 4825 Xor Sum (01 Trie)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4825 题面: Xor Sum Time Limit: 2000/1000 MS (Java/Others) ...
- HDU--4825 Xor Sum (字典树)
题目链接:HDU--4825 Xor Sum mmp sb字典树因为数组开的不够大一直wa 不是报的 re!!! 找了一下午bug 草 把每个数转化成二进制存字典树里面 然后尽量取与x这个位置上不相同 ...
- hdu 4825 Xor Sum trie树
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Proble ...
随机推荐
- 记录一次线上OOM调优经历
现状: k8s 的一个pod 有32G内存,每秒产生新对象的峰值在900Mb ---- 1900Mb(根据jstat计算Eden区获得) . 修改之前的参数 就一个命令行参数是-Xmx31g; 我修改 ...
- 第二十四个知识点:描述一个二进制m组的滑动窗口指数算法
第二十四个知识点:描述一个二进制m组的滑动窗口指数算法 简单回顾一下我们知道的. 大量的密码学算法的大数是基于指数问题的安全性,例如RSA或者DH算法.因此,现代密码学需要大指数模幂算法的有效实现.我 ...
- cosface: large margin cosine loss for deep face recognition
目录 概 主要内容 Wang H, Wang Y, Zhou Z, et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition ...
- DeepFool: a simple and accurate method to fool deep neural networks
目录 概 主要内容 二分类模型 为线性 为一般二分类 多分类问题 仿射 为一般多分类 Moosavidezfooli S, Fawzi A, Frossard P, et al. DeepFool: ...
- Electron-Vue 项目使用Element的el-table组件不显示
1.electron-vue文件夹下的webpack.renderer.config.js配置文件,你会找到这样一行代码,需要添加白名单! let whiteListedModules = ['vue ...
- [算法笔记-题解]问题 A: 例题4-1 一元二次方程求根
问题 A: 例题4-1 一元二次方程求根 [命题人 : 外部导入] 时间限制 : 1.000 sec 内存限制 : 12 MB 题目描述 求一元二次方程ax2+bx+c=0的根,三个系数a, b, c ...
- Linux进程管理之基本指令
目录 基本介绍 显示系统执行的进程 指令 ps - aux 常用选项 每行栏目的含义 查看父进程 终止进程 相关指令 实用案例 踢掉某个非法登录用户 终止远程登录服务sshd,在适当的时候再次重启ss ...
- 造轮子-strace(一)
见字如面,我是东北码农. 本文是造轮子-strace的第一篇,我们先介绍strace的功能.使用.下一篇我们来用代码实现一下strace的功能,造个轮子.今天我们先观察.使用轮子. 1.什么是stra ...
- 编写Java程序,中国道教中掌管天宫的最高权力统治者是玉帝(Emperor),我们可以认为玉帝是一个单例模式,在这个场景中,有玉帝和天宫的大臣(Minister)们,大臣每天要上朝参见玉帝,而每一天参
查看本章节 查看作业目录 需求说明: 中国道教中掌管天宫的最高权力统治者是玉帝(Emperor),我们可以认为玉帝是一个单例模式,在这个场景中,有玉帝和天宫的大臣(Minister)们,大臣每天要上朝 ...
- 编写Java程序,定义一个类似于ArrayList集合类
返回本章节 返回作业目录 需求说明: 设计一个类似于ArrayList的集合类ListArray. ListArray类模拟实现动态数组,在该类定义一个方法用于实现元素的添加功能,以及用于获取List ...