二分查找实现

非常详细的解释,简单但是细节很重要

https://www.cnblogs.com/kyoner/p/11080078.html

正常实现

Input : [1,2,3,4,5]
key : 3
return the index : 2
public int binarySearch(int[] nums, int key) {
int l = 0, h = nums.length - 1;
while (l <= h) {
int m = l + (h - l) / 2;
if (nums[m] == key) {
return m;
} else if (nums[m] > key) {
h = m - 1;
} else {
l = m + 1;
}
}
return -1;
}

时间复杂度

二分查找也称为折半查找,每次都能将查找区间减半,这种折半特性的算法时间复杂度为 O(logN)。

m 计算

有两种计算中值 m 的方式:

  • m = (l + h) / 2
  • m = l + (h - l) / 2

l + h 可能出现加法溢出,也就是说加法的结果大于整型能够表示的范围。但是 l 和 h 都为正数,因此 h - l 不会出现加法溢出问题。所以,最好使用第二种计算法方法。

未成功查找的返回值

循环退出时如果仍然没有查找到 key,那么表示查找失败。可以有两种返回值:

  • -1:以一个错误码表示没有查找到 key
  • l:将 key 插入到 nums 中的正确位置

变种

二分查找可以有很多变种,实现变种要注意边界值的判断。例如在一个有重复元素的数组中查找 key 的最左位置的实现如下:

public int binarySearch(int[] nums, int key) {
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (nums[m] >= key) {
h = m;
} else {
l = m + 1;
}
}
return l;
}

该实现和正常实现有以下不同:

  • h 的赋值表达式为 h = m
  • 循环条件为 l < h
  • 最后返回 l 而不是 -1

在 nums[m] >= key 的情况下,可以推导出最左 key 位于 [l, m] 区间中,这是一个闭区间。h 的赋值表达式为 h = m,因为 m 位置也可能是解。

在 h 的赋值表达式为 h = m 的情况下,如果循环条件为 l <= h,那么会出现循环无法退出的情况,因此循环条件只能是 l < h。以下演示了循环条件为 l <= h 时循环无法退出的情况:

nums = {0, 1, 2}, key = 1
l m h
0 1 2 nums[m] >= key
0 0 1 nums[m] < key
1 1 1 nums[m] >= key
1 1 1 nums[m] >= key
...

当循环体退出时,不表示没有查找到 key,因此最后返回的结果不应该为 -1。为了验证有没有查找到,需要在调用端判断一下返回位置上的值和 key 是否相等。

1. 求开方

69. Sqrt(x) (Easy)

Leetcode / 力扣

public int mySqrt(int x) {
if (x <= 1) {
return x;
}
int l = 1, h = x;
while (l <= h) {
int mid = l + (h - l) / 2;
int sqrt = x / mid;
if (sqrt == mid) {
return mid;
} else if (mid > sqrt) {
h = mid - 1;
} else {
l = mid + 1;
}
}
return h;
}

2. 大于给定元素的最小元素

744. Find Smallest Letter Greater Than Target (Easy)

Leetcode / 力扣

public char nextGreatestLetter(char[] letters, char target) {
int n = letters.length;
int l = 0, h = n - 1;
while (l <= h) {
int m = l + (h - l) / 2;
if (letters[m] <= target) {
l = m + 1;
} else {
h = m - 1;
}
}
return l < n ? letters[l] : letters[0];
}

3. 有序数组的 Single Element

540. Single Element in a Sorted Array (Medium)

Leetcode / 力扣

这个题目细节很恶心,就是要注意右边界,在 h 的赋值表达式为 h = m 的情况下,如果循环条件为 l <= h,那么会出现循环无法退出的情况,因此循环条件只能是 l < h。以下演示了循环条件为 l <= h 时循环无法退出的情况:

nums = {0, 1, 2}, key = 1
l m h
0 1 2 nums[m] >= key
0 0 1 nums[m] < key
1 1 1 nums[m] >= key
1 1 1 nums[m] >= key

令 index 为 Single Element 在数组中的位置。在 index 之后,数组中原来存在的成对状态被改变。如果 m 为偶数,并且 m + 1 < index,那么 nums[m] == nums[m + 1];m + 1 >= index,那么 nums[m] != nums[m + 1]。

从上面的规律可以知道,如果 nums[m] == nums[m + 1],那么 index 所在的数组位置为 [m + 2, h],此时令 l = m + 2;如果 nums[m] != nums[m + 1],那么 index 所在的数组位置为 [l, m],此时令 h = m。

因为 h 的赋值表达式为 h = m,那么循环条件也就只能使用 l < h 这种形式。

取得是nums[m]和nums[m+1],因此不能取 l == h的 情况会出现越界异常

public int singleNonDuplicate(int[] nums) {
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (m % 2 == 1) {
m--; // 保证 l/h/m 都在偶数位,使得查找区间大小一直都是奇数
}
if (nums[m] == nums[m + 1]) {
l = m + 2;
} else {
h = m;
}
}
return nums[l];
}

4. 第一个错误的版本

278. First Bad Version (Easy)

Leetcode / 力扣

题目描述:给定一个元素 n 代表有 [1, 2, ..., n] 版本,在第 x 位置开始出现错误版本,导致后面的版本都错误。可以调用 isBadVersion(int x) 知道某个版本是否错误,要求找到第一个错误的版本。

如果第 m 个版本出错,则表示第一个错误的版本在 [l, m] 之间,令 h = m;否则第一个错误的版本在 [m + 1, h] 之间,令 l = m + 1。

因为 h 的赋值表达式为 h = m,因此循环条件为 l < h。

public class Solution extends VersionControl {
public int firstBadVersion(int n) {
int lo=0,hi=n;
while(lo<hi){
int m=lo+(hi-lo)/2;
if(isBadVersion(m)){
hi=m;
}else{
lo=m+1;
}
}
return lo;
}
}

5. 旋转数组的最小数字

153. Find Minimum in Rotated Sorted Array (Medium)

Leetcode / 力扣

class Solution {
public int findMin(int[] nums) {
int lo=0,hi=nums.length-1;
while(lo<hi){
int m=lo+(hi-lo)/2;
if(nums[m]>nums[hi])lo=m+1;
else hi=m;
}
return nums[lo];
}
}

6. 查找区间

34. Find First and Last Position of Element in Sorted Array

Leetcode / 力扣

先找最左侧的节点,然后再找有边界

class Solution {
public int[] searchRange(int[] nums, int target) {
if(nums.length==0)return new int[]{-1,-1};
int lo=0,hi=nums.length-1;
while(lo<hi){
int m=lo+(hi-lo)/2;
if(nums[m] >= target){
hi=m;
}else if(nums[m]<target){
lo=m+1;
}
}
int cur=lo;
if(nums[lo]!=target)return new int[]{-1,-1};
while(cur<nums.length){
if(nums[cur]==target)cur++;
else break;
}
cur--;
return new int[]{lo,cur};
}
}

可以用二分查找找出第一个位置和最后一个位置,但是寻找的方法有所不同,需要实现两个二分查找。我们将寻找 target 最后一个位置,转换成寻找 target+1 第一个位置,再往前移动一个位置。这样我们只需要实现一个二分查找代码即可。

public int[] searchRange(int[] nums, int target) {
int first = findFirst(nums, target);
int last = findFirst(nums, target + 1) - 1;
if (first == nums.length || nums[first] != target) {
return new int[]{-1, -1};
} else {
return new int[]{first, Math.max(first, last)};
}
} private int findFirst(int[] nums, int target) {
int l = 0, h = nums.length; // 注意 h 的初始值
while (l < h) {
int m = l + (h - l) / 2;
if (nums[m] >= target) {
h = m;
} else {
l = m + 1;
}
}
return l;
}

Leedcode算法专题训练(二分查找)的更多相关文章

  1. Leedcode算法专题训练(数组与矩阵)

    1. 把数组中的 0 移到末尾 283. Move Zeroes (Easy) Leetcode / 力扣 class Solution { public void moveZeroes(int[] ...

  2. Leedcode算法专题训练(搜索)

    BFS 广度优先搜索一层一层地进行遍历,每层遍历都是以上一层遍历的结果作为起点,遍历一个距离能访问到的所有节点.需要注意的是,遍历过的节点不能再次被遍历. 第一层: 0 -> {6,2,1,5} ...

  3. Leedcode算法专题训练(双指针)

    算法思想 双指针 167. 两数之和 II - 输入有序数组 双指针的典型用法 如果两个指针指向元素的和 sum == target,那么得到要求的结果: 如果 sum > target,移动较 ...

  4. Leedcode算法专题训练(哈希表)

    Java 中的 HashSet 用于存储一个集合,可以查找元素是否在集合中.如果元素有穷,并且范围不大,那么可以用一个布尔数组来存储一个元素是否存在.例如对于只有小写字符的元素,就可以用一个长度为 2 ...

  5. Leedcode算法专题训练(树)

    递归 一棵树要么是空树,要么有两个指针,每个指针指向一棵树.树是一种递归结构,很多树的问题可以使用递归来处理. 1. 树的高度 104. Maximum Depth of Binary Tree (E ...

  6. Leedcode算法专题训练(分治法)

    归并排序就是一个用分治法的经典例子,这里我用它来举例描述一下上面的步骤: 1.归并排序首先把原问题拆分成2个规模更小的子问题. 2.递归地求解子问题,当子问题规模足够小时,可以一下子解决它.在这个例子 ...

  7. Leedcode算法专题训练(排序)

    排序 快速排序 用于求解 Kth Element 问题,也就是第 K 个元素的问题. 可以使用快速排序的 partition() 进行实现.需要先打乱数组,否则最坏情况下时间复杂度为 O(N2). 堆 ...

  8. Leedcode算法专题训练(贪心)

    1. 分配饼干 455. 分发饼干 题目描述:每个孩子都有一个满足度 grid,每个饼干都有一个大小 size,只有饼干的大小大于等于一个孩子的满足度,该孩子才会获得满足.求解最多可以获得满足的孩子数 ...

  9. Leedcode算法专题训练(位运算)

    https://www.cnblogs.com/findbetterme/p/10787118.html 看这个就完事了 1. 统计两个数的二进制表示有多少位不同 461. Hamming Dista ...

随机推荐

  1. 「NGK每日快讯」12.21日NGK第48期官方快讯!

  2. 投资者通过这几种方式可以快速在NGK赚取收益

    2020年全球经济危机,各国经济持续低迷,资本市场变得躁动不安.而区块链市场,却异常火爆.各种公链项目相继而起,DeFi.分布式存储一个比一个火爆.NGK公链,无疑成为了这场热潮中有力的推动者之一,一 ...

  3. 为什么Linux默认页大小是4KB

    本文转载自为什么 Linux 默认页大小是 4KB 导语 我们都知道 Linux 会以页为单位管理内存,无论是将磁盘中的数据加载到内存中,还是将内存中的数据写回磁盘,操作系统都会以页面为单位进行操作, ...

  4. 用Python来控制Autocad的打印------以Pycomcad为例

    from pycomcad import * #以pycomcad作为接口库为例 import win32com acad=Autocad() 打印最重要的设置都在上面的界面中,下面对这些个界面,用P ...

  5. openwrt编译加载龙尚U9300模组上网

    硬件平台:MT7628A openwrt版本:MTK_SDK 1.添加模组信息 /build_dir/target-mipsel_24kc_musl/linux-ramips_mt76x8/linux ...

  6. deepin-terminal改造之路

    目录 1. 背景介绍 2. 下载源码 3. 依赖检查及安装 4. 改造之路 4.1 终端透明度快捷键 4.1.1 设置面板增加选项内容 4.1.2 添加配置解析内容 4.1.3 功能实现 4.1.4 ...

  7. 只需2分钟!PC端的报表即可转换成手机报表

    转: 只需2分钟!PC端的报表即可转换成手机报表 手机制作报表,这个大家不知有没有尝试过,虽然我们平时都用电脑做,但是电脑要是不在身边了,手机就可以用来应应急.但其实小编并没有在手机上制作报表的实践经 ...

  8. dubbo实战之一:准备和初体验

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  9. OpenGL光照贴图

    一:啥叫贴图 上一节中,我们将整个物体的材质定义为一个整体,但现实世界中的物体通常并不只包含有一种材质,而是由多种材质所组成. 拓展之前的系统,引入漫反射和镜面光贴图(Map).这允许我们对物体的漫反 ...

  10. HDU1067 Gap

    题目: Let's play a card game called Gap. You have 28 cards labeled with two-digit numbers. The first d ...