使用信息增益构造决策树,完成后剪枝

目录

1 构造决策树

1 根结点的选择

色泽 信息增益

根据色泽划分为 青绿,乌黑,浅白 三个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{2}{4} log_2 \frac{2}{4}+\frac{2}{4} log_2 \frac{2}{4})=1 \\
Ent(D^2) &= -(\frac{1}{4} log_2 \frac{1}{4}+\frac{3}{4} log_2 \frac{3}{4})=0.811 \\
Ent(D^3)&= -(\frac{2}{2} log_2 \frac{2}{2}+\frac{0}{2} log_2 \frac{0}{2})=0 \\
Ent(D)&= -(\frac{5}{10} log_2 \frac{5}{10}+\frac{5}{10} log_2 \frac{5}{10})=1 \\
Gani(D,色泽)&=Ent(D)-\sum_{v=1}^3 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{4}{10}\times 1+\frac{4}{10} \times 0.811+\frac{2}{10}\times0) \\
&= 0.2756

\end{aligned}
\]

根蒂 信息增益

根据根蒂划分为 蜷缩 稍蜷 硬挺 三个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{2}{5} log_2 \frac{2}{5}+\frac{3}{5} log_2 \frac{3}{5})=0.971 \\
Ent(D^2) &= -(\frac{2}{4} log_2 \frac{2}{4}+\frac{2}{4} log_2 \frac{2}{4})=1 \\
Ent(D^3)&= -(\frac{1}{1} log_2 \frac{1}{1}+\frac{0}{1} log_2 \frac{0}{1})=0 \\
Ent(D)&= -(\frac{5}{10} log_2 \frac{5}{10}+\frac{5}{10} log_2 \frac{5}{10})=1 \\
Gani(D,根蒂)&=Ent(D)-\sum_{v=1}^3 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{5}{10}\times 0.971+\frac{4}{10} \times 1+\frac{1}{10}\times0) \\
&= 0.1145

\end{aligned}
\]

敲声 信息增益

根据色泽划分为 浊响,沉闷,清脆 三个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{2}{6} log_2 \frac{2}{6}+\frac{4}{6} log_2 \frac{4}{6})=0.918 \\
Ent(D^2) &= -(\frac{2}{3} log_2 \frac{2}{3}+\frac{1}{3} log_2 \frac{1}{3})=0.918 \\
Ent(D^3)&= -(\frac{1}{1} log_2 \frac{1}{1}+\frac{0}{1} log_2 \frac{0}{1})=0 \\
Ent(D)&= -(\frac{5}{10} log_2 \frac{5}{10}+\frac{5}{10} log_2 \frac{5}{10})=1 \\
Gani(D,敲声)&=Ent(D)-\sum_{v=1}^3 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{6}{10}\times 0.918+\frac{3}{10} \times 0.918+\frac{1}{10}\times0) \\
&=0.2346

\end{aligned}
\]

纹理 信息增益

根据 纹理 划分为 清晰 稍糊 模糊 三个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{2}{6} log_2 \frac{2}{6}+\frac{4}{6} log_2 \frac{4}{6})=0.918 \\
Ent(D^2) &= -(\frac{2}{3} log_2 \frac{2}{3}+\frac{1}{3} log_2 \frac{1}{3})=0.918 \\
Ent(D^3)&= -(\frac{1}{1} log_2 \frac{1}{1}+\frac{0}{1} log_2 \frac{0}{1})=0 \\
Ent(D)&= -(\frac{5}{10} log_2 \frac{5}{10}+\frac{5}{10} log_2 \frac{5}{10})=1 \\
Gani(D,纹理)&=Ent(D)-\sum_{v=1}^3 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{6}{10}\times 0.918+\frac{3}{10} \times 0.918+\frac{1}{10}\times0) \\
&= 0.2346

\end{aligned}
\]

脐部 信息增益

根据色泽划分为 凹陷,稍凹,平坦 三个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{4} log_2 \frac{1}{4}+\frac{3}{4} log_2 \frac{3}{4})=0.811 \\
Ent(D^2) &= -(\frac{2}{4} log_2 \frac{2}{4}+\frac{2}{4} log_2 \frac{2}{4})=1 \\
Ent(D^3)&= -(\frac{2}{2} log_2 \frac{2}{2}+\frac{0}{2} log_2 \frac{0}{2})=0 \\
Ent(D)&= -(\frac{5}{10} log_2 \frac{5}{10}+\frac{5}{10} log_2 \frac{5}{10})=1 \\
Gani(D,脐部)&=Ent(D)-\sum_{v=1}^3 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{4}{10}\times 0.811+\frac{4}{10} \times 1+\frac{2}{10}\times0) \\
&= 0.2756

\end{aligned}
\]

触感 信息增益

根据色泽划分为 硬滑,软粘 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{3}{6} log_2 \frac{3}{6}+\frac{3}{6} log_2 \frac{3}{6})=1 \\
Ent(D^2) &= -(\frac{2}{4} log_2 \frac{2}{4}+\frac{2}{4} log_2 \frac{2}{4})=1 \\
Ent(D)&= -(\frac{5}{10} log_2 \frac{5}{10}+\frac{5}{10} log_2 \frac{5}{10})=1 \\
Gani(D,触感)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{6}{10}\times 1 +\frac{4}{10} \times 1 \\
&= 0

\end{aligned}
\]

选择根结点构建决策树

\[\begin{aligned}
Gain(D,色泽)=0.2756 \ Gain(D,根蒂)=0.1145 \ Gain(D,敲声)=0.2346 \\
Gain(D,纹理)=0.2346 \ Gain(D,脐部)=0.2756 \ Gain(D,触感)=0

\end{aligned}
\]

比较六个属性的信息增益大小,选择脐部作为根结点

则数据集被划分为

2 对分支结点\({1,2,3,14}\)进行划分

色泽 信息增益

根据色泽划分为 青绿,乌黑,浅白 三个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{0}{1} log_2 \frac{0}{1}+\frac{1}{1} log_2 \frac{1}{1})=0 \\
Ent(D^2) &= -(\frac{0}{2} log_2 \frac{0}{2}+\frac{2}{2} log_2 \frac{2}{2})=0 \\
Ent(D^3)&= -(\frac{1}{1} log_2 \frac{1}{1}+\frac{0}{1} log_2 \frac{0}{1})=0 \\
Ent(D)&= -(\frac{1}{4} log_2 \frac{1}{4}+\frac{3}{4} log_2 \frac{3}{4})=0.811 \\
Gani(D,色泽)&=Ent(D)-\sum_{v=1}^3 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 0.811 - (\frac{1}{4}\times 0+\frac{2}{4} \times 0 +\frac{1}{4}\times 0) \\
&= 0.811

\end{aligned}
\]

根蒂 信息增益

根据根蒂划分为 蜷缩 稍蜷 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{0}{3} log_2 \frac{0}{3}+\frac{3}{3} log_2 \frac{3}{3})=0 \\
Ent(D^2) &= -(\frac{1}{1} log_2 \frac{1}{1}+\frac{0}{1} log_2 \frac{0}{1})=0 \\
Ent(D)&= -(\frac{1}{4} log_2 \frac{1}{4}+\frac{3}{4} log_2 \frac{3}{4})= 0.811\\
Gani(D,根蒂)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 0.811 - (\frac{3}{4}\times 0 +\frac{1}{4} \times 0) \\
&= 0.811

\end{aligned}
\]

敲声 信息增益

根据色泽划分为 浊响,沉闷 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{0}{2} log_2 \frac{0}{2}+\frac{2}{2} log_2 \frac{2}{2})=0 \\
Ent(D^2) &= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1 \\

Ent(D)&= -(\frac{1}{4} log_2 \frac{1}{4}+\frac{3}{4} log_2 \frac{3}{4})=0.811 \\
Gani(D,敲声)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 0.811 - (\frac{2}{4}\times 0 +\frac{2}{4} \times 1 ) \\
&=0.311

\end{aligned}
\]

纹理 信息增益

根据 纹理 划分为 清晰 稍糊 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{0}{3} log_2 \frac{0}{3}+\frac{3}{3} log_2 \frac{3}{3})=0 \\
Ent(D^2) &= -(\frac{1}{1} log_2 \frac{1}{1}+\frac{0}{1} log_2 \frac{0}{1})=0 \\

Ent(D)&= -(\frac{1}{4} log_2 \frac{1}{4}+\frac{3}{4} log_2 \frac{3}{4})=0.811 \\
Gani(D,纹理)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 0.811 - (\frac{3}{4}\times 0+\frac{1}{4} \times 0 ) \\
&= 0.811

\end{aligned}
\]

触感 信息增益

根据触感划分为 硬滑 一个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{4} log_2 \frac{1}{4}+\frac{3}{4} log_2 \frac{3}{4})=0.811 \\
Ent(D)&= -(\frac{1}{4} log_2 \frac{1}{4}+\frac{3}{4} log_2 \frac{3}{4})= 0.811 \\
Gani(D,触感)&=Ent(D)-\sum_{v=1}^1 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 0.811 - (\frac{4}{4}\times 0.811 ) \\
&= 0

\end{aligned}
\]

选择分类结点构建决策树

\[\begin{aligned}
Gain(D,色泽)=0.811 \ Gain(D,根蒂)=0.811 \ Gain(D,敲声)=0.311 \\
Gain(D,纹理)=0.811 \ \ \ Gain(D,触感)=0

\end{aligned}
\]

不妨选择色泽作为分类依据

形成的决策树

3 对分支 \({6,7,15,17}\)进行划分

色泽 信息增益

根据色泽划分为 青绿,乌黑 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1 \\
Ent(D^2) &= -(\frac{1}{2} log_2 \frac{0}{2}+\frac{1}{2} log_2 \frac{1}{2})=1 \\

Ent(D)&= -(\frac{2}{4} log_2 \frac{2}{4}+\frac{2}{4} log_2 \frac{2}{4})= 1 \\
Gani(D,色泽)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{2}{4}\times 1+\frac{2}{4} \times 1 ) \\
&= 0

\end{aligned}
\]

根蒂 信息增益

根据根蒂划分为 蜷缩 稍蜷 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{3} log_2 \frac{1}{3}+\frac{2}{3} log_2 \frac{2}{3})=0。918\\
Ent(D^2) &= -(\frac{1}{1} log_2 \frac{1}{1}+\frac{0}{1} log_2 \frac{0}{1})=0 \\
Ent(D)&= -(\frac{2}{4} log_2 \frac{2}{4}+\frac{2}{4} log_2 \frac{2}{4})= 1\\
Gani(D,根蒂)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{3}{4}\times 0.918 +\frac{1}{4} \times 0) \\
&= 0.3115

\end{aligned}
\]

敲声 信息增益

根据色泽划分为 浊响,沉闷 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{3} log_2 \frac{1}{3}+\frac{2}{3} log_2 \frac{2}{3})=0.918 \\
Ent(D^2) &= -(\frac{1}{1} log_2 \frac{1}{1}+\frac{0}{1} log_2 \frac{0}{1})= 0 \\

Ent(D)&= -(\frac{2}{4} log_2 \frac{2}{4}+\frac{2}{4} log_2 \frac{2}{4})=1 \\
Gani(D,敲声)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{3}{4}\times 0.918 +\frac{1}{4} \times 0 ) \\
&=0.3115

\end{aligned}
\]

纹理 信息增益

根据 纹理 划分为 清晰 稍糊 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1 \\
Ent(D^2) &= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1 \\

Ent(D)&= -(\frac{2}{4} log_2 \frac{2}{4}+\frac{2}{4} log_2 \frac{2}{4})=1 \\
Gani(D,纹理)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{2}{4}\times 1+\frac{2}{4} \times 1 ) \\
&= 0

\end{aligned}
\]

触感 信息增益

根据触感划分为 硬滑,软粘 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{3} log_2 \frac{1}{3}+\frac{2}{3} log_2 \frac{2}{3})=0.918 \\
Ent(D^2) &= -(\frac{1}{1} log_2 \frac{1}{1}+\frac{0}{1} log_2 \frac{0}{1})=0 \\

Ent(D)&= -(\frac{2}{4} log_2 \frac{2}{4}+\frac{2}{4} log_2 \frac{2}{4})=1 \\
Gani(D,触感)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{3}{4}\times 0.918+\frac{1}{4} \times 0 ) \\
&= 0.2295

\end{aligned}
\]

选择分类结点构建决策树

\[\begin{aligned}
Gain(D,色泽)=0 \ Gain(D,根蒂)=0.3115 \ Gain(D,敲声)=0.3115 \\
Gain(D,纹理)=0 \ \ \ Gain(D,触感)=0.2295

\end{aligned}
\]

不妨选择根蒂作为分类依据

此时决策树为

4 对分支\({6,7,15}\)进行划分

色泽 信息增益

根据色泽划分为 青绿,乌黑 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{0}{1} log_2 \frac{0}{1}+\frac{1}{1} log_2 \frac{1}{1})=0 \\
Ent(D^2) &= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1 \\

Ent(D)&= -(\frac{1}{3} log_2 \frac{1}{3}+\frac{2}{3} log_2 \frac{2}{3})= 0.918 \\
Gani(D,色泽)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 0.918 - (\frac{1}{3}\times 0+\frac{2}{3} \times 1 ) \\
&= 0.252

\end{aligned}
\]

敲声 信息增益

根据色泽划分为 浊响 一个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{3} log_2 \frac{1}{3}+\frac{2}{3} log_2 \frac{2}{3})=0.918 \\

Ent(D)&= -(\frac{2}{3} log_2 \frac{2}{3}+\frac{2}{3} log_2 \frac{2}{3})=0.918 \\
Gani(D,敲声)&=Ent(D)-\sum_{v=1}^1 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 0.918 - (\frac{3}{3}\times 0.918 ) \\
&=0

\end{aligned}
\]

纹理 信息增益

根据 纹理 划分为 清晰 稍糊 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1 \\
Ent(D^2) &= -(\frac{0}{1} log_2 \frac{0}{1}+\frac{1}{1} log_2 \frac{1}{1})=0\\

Ent(D)&= -(\frac{1}{3} log_2 \frac{1}{3}+\frac{2}{3} log_2 \frac{2}{3})=0.918 \\
Gani(D,纹理)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 0.918 - (\frac{2}{3}\times 1+\frac{1}{3} \times 0 ) \\
&= 0.252

\end{aligned}
\]

触感 信息增益

根据触感划分为 软粘 一个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{3} log_2 \frac{1}{3}+\frac{2}{3} log_2 \frac{2}{3})=0.918 \\

Ent(D)&= -(\frac{1}{3} log_2 \frac{1}{3}+\frac{2}{3} log_2 \frac{2}{3})=0.918\\
Gani(D,触感)&=Ent(D)-\sum_{v=1}^1 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 0.918 - (\frac{3}{3}\times 0.918 ) \\
&= 0

\end{aligned}
\]

选择分类结点构建决策树

\[\begin{aligned}
Gain(D,色泽)=0 .252 \ \ Gain(D,敲声)=0 \\
Gain(D,纹理)=0.252 \ \ \ Gain(D,触感)=0

\end{aligned}
\]

不妨选择色泽作为分类依据

此时决策树为

5 对分支\({7,15}\)​进行划分

敲声 信息增益

根据色泽划分为 浊响 一个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1 \\

Ent(D) &= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1\\
Gani(D,敲声)&=Ent(D)-\sum_{v=1}^1 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{2}{2}\times 0.918 ) \\
&= 0

\end{aligned}
\]

纹理 信息增益

根据 纹理 划分为 清晰 稍糊 两个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{0}{1} log_2 \frac{0}{1}+\frac{1}{1} log_2 \frac{1}{1})=0 \\
Ent(D^2) &= -(\frac{1}{1} log_2 \frac{1}{1}+\frac{0}{1} log_2 \frac{0}{1})=0\\

Ent(D)&= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1 \\
Gani(D,纹理)&=Ent(D)-\sum_{v=1}^2 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{1}{2}\times 0+\frac{1}{2} \times 0 ) \\
&= 1

\end{aligned}
\]

触感 信息增益

根据触感划分为 软粘 一个子集

计算信息熵

\[\begin{aligned}
Ent(D^1) &= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1 \\

Ent(D) &= -(\frac{1}{2} log_2 \frac{1}{2}+\frac{1}{2} log_2 \frac{1}{2})=1\\
Gani(D,触感)&=Ent(D)-\sum_{v=1}^1 \frac{|D^v|}{|D|}Ent(D^v) \\
&= 1 - (\frac{2}{2}\times 0.918 ) \\
&= 0

\end{aligned}
\]

选择分类结点构建决策树

\[\begin{aligned}
\ \ Gain(D,敲声)=0 \ Gain(D,纹理)=1 \ \ \ Gain(D,触感)=0

\end{aligned}
\]

选择纹理作为分类依据

此时决策树为

2 决策树后剪枝

1 考虑结点\(7,15\)

原分支(剪枝前),有三个样本被正确分类 验证集精度为 42.8%

剪枝后的决策树

此时验证集有四个样本被正确分类,精度为57.1%

于是后剪枝策略决定剪枝,得到上图的决策树

2 考虑结点\(6,715\)色泽=?

由上图,决策树精度为57.1%

剪去结点后的决策树为

此时验证集有四个样本被正确分类,精度为57.1%

与未剪枝时的精度相同,西瓜书中采用了不剪枝的策略。在这里我们不妨采用剪枝的策略,于是得到上图的决策树

3 考虑结点\(1,2,3,14\)​​色泽=?

在上图基础上来考虑剪去结点\(1,2,3,14\)色泽=? ,剪枝后的决策树为

此时的决策树正确分类的样本5个,精度为71.4%

根据后剪枝策略,进行剪枝,得到上图的决策树

4考虑 \(6,7,15,17\)根蒂=?

剪枝后的决策树为

此时的决策树的精度仍然为71.4%

与未剪枝时的精度相同,西瓜书中采用了不剪枝的策略。在这里我们不妨采用剪枝的策略,于是得到上图的决策树

最终得到上图的决策树

决策树 机器学习,西瓜书p80 表4.2 使用信息增益生成决策树及后剪枝的更多相关文章

  1. 周志华-机器学习西瓜书-第三章习题3.5 LDA

    本文为周志华机器学习西瓜书第三章课后习题3.5答案,编程实现线性判别分析LDA,数据集为书本第89页的数据 首先介绍LDA算法流程: LDA的一个手工计算数学实例: 课后习题的代码: # coding ...

  2. python实现简单决策树(信息增益)——基于周志华的西瓜书数据

    数据集如下: 色泽 根蒂 敲声 纹理 脐部 触感 好瓜 青绿 蜷缩 浊响 清晰 凹陷 硬滑 是 乌黑 蜷缩 沉闷 清晰 凹陷 硬滑 是 乌黑 蜷缩 浊响 清晰 凹陷 硬滑 是 青绿 蜷缩 沉闷 清晰 ...

  3. 决策树ID3原理及R语言python代码实现(西瓜书)

    决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特 ...

  4. (二)《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”——CART决策树

    CART决策树 (一)<机器学习>(周志华)第4章 决策树 笔记 理论及实现——“西瓜树” 参照上一篇ID3算法实现的决策树(点击上面链接直达),进一步实现CART决策树. 其实只需要改动 ...

  5. LASSO回归与L1正则化 西瓜书

    LASSO回归与L1正则化 西瓜书 2018年04月23日 19:29:57 BIT_666 阅读数 2968更多 分类专栏: 机器学习 机器学习数学原理 西瓜书   版权声明:本文为博主原创文章,遵 ...

  6. 朴素贝叶斯python代码实现(西瓜书)

    朴素贝叶斯python代码实现(西瓜书) 摘要: 朴素贝叶斯也是机器学习中一种非常常见的分类方法,对于二分类问题,并且数据集特征为离散型属性的时候, 使用起来非常的方便.原理简单,训练效率高,拟合效果 ...

  7. 手把手生成决策树(dicision tree)

    手把手生成决策树(dicision tree) 标签: Python 机器学习 主要參考资料: Peter HARRINGTON.机器学习实战[M].李锐,李鹏,曲亚东,王斌译.北京:人民邮电出版社, ...

  8. GZFramwork数据库层《二》单据表增删改查(自动生成单据号码)

    运行效果: 使用代码生成器(GZCodeGenerate)生成tb_EmpLeave的Model 生成器源代码下载地址: https://github.com/GarsonZhang/GZCodeGe ...

  9. Javascript_06_表单验证(离开单项,输入框后提示信息)

    Javascript_06_ 表单验证(离开单项,输入框后提示信息) 说明:对于必须输入的入力框,光标离开(使用 onblur方法)时进行检查.假如有错,红色的提示信息直接在该画面的这个输入框的后面显 ...

随机推荐

  1. 记录不存在则插入,存在则更新 → MySQL 的实现方式有哪些?

    开心一刻 今天我爸.我.我女儿一起吃饭,我们每人一个鸡腿 女儿问道:爸爸,你吃鸡腿吗 我以为她要把她的鸡腿给我吃,倍感欣慰地说道:我不吃,宝贝 女儿一把抓起我的鸡腿放进了她爷爷的碗里,说道:不吃给爷爷 ...

  2. Linux系列(21) - 光盘、U盘挂载

    挂载光盘 mount命令.umount命令 step-1 建立挂载点 原理:相当于建立盘符,建个目录读取光盘内容 命令:[root@localhost ~]# mkdir /mnt/cdrom/ 备注 ...

  3. linux 服务器资源 监控工具

    工具一:vmstat(服务端) 一.vmstat选项参数解释 -V:显示vmstat版本信息 -n:只在开始时显示一次各字段名称 -a:显示活跃和非活跃内存 -d:显示各个磁盘相关统计信息 -D:显示 ...

  4. 启动jemeter 报错相关解决方案

    1:当启动jemeter时报错"页面文件太小,无法完成操作" 如图: 是说明分配的内容不足,即可调整内存重启即可解决 1):打开:控制面板>系统和安全>系统 2):点击 ...

  5. 1.3redis小结--配置php reids拓展

    1.执行php文件 输出phpinfo();  <?php phpinfo(); 2.根据PHPinfo的信息确定需要下载的 php_redis.dll , php_igbinary.dll 版 ...

  6. shell脚本在CentOS7自动更包

    手动更包有些繁琐,就想着用脚本自动更包,后来试了下,最后成功啦! 以下是根据实际项目编写的: 操作环境:centos7.0 tomcat版本:7.0.78 以下为项目存放目录如下: updatefil ...

  7. [转载]CentOS 7 用户怎样安装 LNMP(Nginx+PHP+MySQL)

    关于 Nginx (发音 "engine x")这是一款免费.开源.高效的 HTTP 服务器,Nginx是以稳定著称,丰富的功能,结构简单,低资源消耗.本教程演示如何在CentOS ...

  8. 【Vue】淘气三千问之 data为什么是函数而不是对象?这河狸吗

    朋友,当你提出以上问题的时候建议你先去复习下原型链的知识 但是我好人做到底直接就讲了吧,我们先看一下下面的这段代码: function Component () { this.data = this. ...

  9. 鸿蒙内核源码分析(源码注释篇) | 鸿蒙必定成功,也必然成功 | 百篇博客分析OpenHarmony源码 | v13.02

    百篇博客系列篇.本篇为: v13.xx 鸿蒙内核源码分析(源码注释篇) | 鸿蒙必定成功,也必然成功 | 51.c.h .o 几点说明 kernel_liteos_a_note | 中文注解鸿蒙内核 ...

  10. 你说要你想玩爬虫,但你说你不懂Python正则表达式,我信你个鬼,那你还不来看看?

    前言 正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配. re 模块也提供了与这些方法功能完全一致的函数,这些函数使用一个模式字符串做为它们的第一个参数. re.mat ...