Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并
通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的。嗯,然后呢?(っ•̀ω•́)っ
然后,我们就可以对于每一个节点的两棵子树,求出其交换前与交换后的两棵子树内的逆序对个数,取最小就好啦!
怎么求啊,不能暴力吧,TLE啊,不会了呀!!! (ノ`⊿´)ノ(掀桌
对了,我们有线段树合并!(o゚▽゚)o
(如果不知道线段树合并是什么可以看这一篇文章哦。)
对于每一个叶节点,我们都可以建一棵权值线段树,然后一步一步合并上来,顺便求出两颗子树交换前和交换后的次数就好了。
一次线段树合并的时间复杂度就是两棵线段树之间重复节点的个数,由于这道题目的特殊性,所以两棵线段树之间重复节点的个数不会太多,总的时间复杂度就是O(nlogn)左右啦!(゚▽゚*)
代码:
#include<iostream>
#include<cstdio>
using namespace std;
//val存储每个节点的值,ls存储每个节点的左儿子编号 ,rs存储每个节点的右儿子编号
int n=0,tot=0,t=0,val[8000000],ls[8000000],rs[8000000];
long long ans=0,anon=0,antw=0;
int builnetre(int l,int r,int x)//建一棵新的线段树
{
val[++tot]=1;
if(l==r) return tot;
int mid=(l+r)>>1,nw=tot;
if(x<=mid) ls[nw]=builnetre(l,mid,x);
else rs[nw]=builnetre(mid+1,r,x);
return nw;
}
int mergtwtre(int l,int r,int x,int y)//合并两棵线段树
{
if(!x||!y) return (!x)?y:x;
if(l==r) { val[++tot]=val[x]+val[y]; return tot; }
int mid=(l+r)>>1,nw=++tot;
anon+=(long long)(val[rs[x]])*val[ls[y]];//anon为不交换的逆序对个数
antw+=(long long)(val[rs[y]])*val[ls[x]];//antw为交换后的逆序对个数
ls[nw]=mergtwtre(l,mid,ls[x],ls[y]);
rs[nw]=mergtwtre(mid+1,r,rs[x],rs[y]);
val[nw]=val[ls[nw]]+val[rs[nw]];
return nw;
}
int worea()
{
scanf("%d",&t);
if(t) return builnetre(1,n,t);
int nw=mergtwtre(1,n,worea(),worea());
ans+=min(anon,antw);//取最小累加
anon=antw=0;//注意:这个赋值语句不能放在合并函数之前,不然它们的值就会在下一层的合并中改变,就无法达到初始化的效果了
return nw;
}
int main()
{
scanf("%d",&n);
worea();
printf("%lld",ans);
return 0;
}
参考文章。
Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并的更多相关文章
- BZOJ.2212.[POI2011]Tree Rotations(线段树合并)
题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...
- BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )
线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...
- 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并
[BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...
- bzoj2212[Poi2011]Tree Rotations [线段树合并]
题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...
- BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对
原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...
- bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并
Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...
- BZOJ_2212_[Poi2011]Tree Rotations_线段树合并
BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...
- [POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对
题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为 ...
- [bzoj2212]Tree Rotations(线段树合并)
解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...
随机推荐
- PTA 面向对象程序设计 6-1 引用作函数形参交换两个整数
引用作函数形参交换两个整数 设计一个void类型的函数Swap,该函数有两个引用类型的参数,函数功能为实现两个整数交换的操作. 裁判测试程序样例: #include <iostream> ...
- R和Rstudio的安装
首先是安装R再安装Rstudio 链接放在这里: R语言软件以及Rstudio软件下载:链接:https://pan.baidu.com/s/11TH4mJjoi3QXGfamB697rw 密码:o1 ...
- springboot 配置 application.properties相关
springboot 有读取外部配置文件的方法,如下优先级: 第一种是在jar包的同一目录下建一个config文件夹,然后把配置文件放到这个文件夹下.第二种是直接把配置文件放到jar包的同级目录.第三 ...
- Postman 如何调试加密接口?
大家好,我是安果! 众所周知,Postman 是一款非常流行且易用的 API 调试工具,在接口调试或测试时经常被使用针对普通 API 接口,我们可以直接在 Postman 中输入 URL.Query ...
- IDL读取fits文件
使用mrdfits函数 这是天文学标准库中的函数,下载地址:https://idlastro.gsfc.nasa.gov/homepage.html,下载后,将pro文件夹导入到IDL工程中. str ...
- python学习笔记(三)-列表&字典
列表: 一.列表操作"""Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的元素.比如,列出班里所有同学的名字,就可以用一 ...
- spy++查找窗口句柄
spy++可以用来查找桌面程序(c/s)的窗口句柄,实现自动化测试. def find_idxSubHandle(pHandle, winClass, index=0): ""&q ...
- 判断javaScript变量是Ojbect类型还是Array类型
JavaScript是弱类型的语言,所以对变量的类型并没有强制控制类型.所以声明的变量可能会成为其他类型的变量, 所以在使用中经常会去判断变量的实际类型. 对于一般的变量我们会使用typeof来判 ...
- AT3611-Tree MST【点分治,最小生成树】
正题 题目链接:https://www.luogu.com.cn/problem/AT3611 题目大意 给出\(n\)个点的一棵树. 现在有一张完全图,两个点之间的边权为\(w_x+w_y+dis( ...
- kettle 多表全删全插同步数据 两种方案
背景: 接到上级指示,要从外网某库把数据全部导入到内网,数据每天更新一次即可,大约几百万条数据,两个库结构一样,mysql的,两台数据库所在服务器都是windows server的,写个java接口实 ...