这个帖子,是在自己学知识点累了的时候就看看\(AGC\)的题目来休息。

而且白天上课可以做(

AGC-001

\(A\ BBQ Easy\)

考虑从小到大排,相邻两个取为一对。

BBQ Easy
#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
#define N 100000 ll n;
ll num[N],ans; int main(){
scanf("%lld",&n);
for(int i = 1;i <= 2 * n;++i)
scanf("%lld",&num[i]);
std::sort(num + 1,num + 2 * n + 1);
for(int i = 2 * n - 1;i >= 1;i -= 2)
ans += num[i];
std::cout<<ans<<std::endl;
}

\(B\ Mysterious Light\)

光线实则是在平行四边形里游走的。

Mysterious Light
#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std;
LL n,x,ans,x1,x2;
int main()
{
scanf("%lld%lld",&n,&x);
ans=n;
x1=x,x2=n-x;
while(1)
{
if(x1<x2) swap(x1,x2);
if(!x2) break;
if(x1%x2==0) ans-=x2;
ans+=x2*(x1/x2)*2;
x1-=x2*(x1/x2);
}
printf("%lld\n",ans);
}

\(C\ Shorten Diameter\)

考虑\(n\)很小,考虑枚举直径中间的那个点/边,以他为中间的树高不能超过\(\frac{k}{2}\)

暴力\(dfs\)就行了。

明天机房要封起来,什么体育机考。。。

明天安心卷文化课吧。

Shorten Diameter
#include<iostream>
#include<cstdio>
#define ll long long
#define N 40005 struct P{int fr,to,next;}e[N]; ll n,k,head[N],cnt; inline void add(ll x,ll y){
e[++cnt].to = y;
e[cnt].fr = x;
e[cnt].next = head[x];
head[x] = cnt;
} ll tot,ans; inline void dfs(ll u,ll fa,ll st){
tot ++ ;
if(st == 0)
return ;
for(int i = head[u];i;i = e[i].next){
int v = e[i].to;
if(v == fa)
continue;
dfs(v,u,st - 1);
}
} int main(){
scanf("%lld%lld",&n,&k);
for(int i = 1;i <= n - 1;++i){
ll x,y;
scanf("%lld%lld",&x,&y);
add(x,y);
add(y,x);
}
if(k % 2 == 1){
for(int i = 1;i <= cnt;++i){
tot = 0;
ll u = e[i].fr,v = e[i].to;
dfs(u,v,k / 2);
dfs(v,u,k / 2);
ans = std::max(ans,tot);
}
}
if(k % 2 == 0){
for(int i = 1;i <= n;++i)
tot = 0,dfs(i,0,k / 2),ans = std::max(ans,tot);;
}
std::cout<<n - ans<<std::endl;
}

\(D\ Arrays and Palindrome\)

回来了。

这题是看题解做的。

因为没有怎么看懂题目。

考虑把相等的点连上边,那么要求的是让所有点连上一起。

然后发现如果说出现一个长度为奇数的回文串,最中间的那个点就会没有线连,然后为了让它和其他的点连上,这个点的度数必须是1,然后为了保证一笔画,这样的点必须至多出现两个,所以奇数长度的回文串至多只能有两个,否则就无解了,然后多画几组会发现。。如果出现奇数长度的回文串它们还必须出现在一头一尾

那么就开始构造

那么剩下的就是构造啦

当全部都是偶数的时候,我们在最开头先放一个1,这样后面就错开了,然后第1到m−1都可以直接复制下来,至于最后一个回文串,我们可以放一堆2中间夹一个1这样(具体自己画一下就知道了)

当有一个奇数的时候,我们把它放在A的最后,B的前面部分的构造方式同上,最后一个长度为奇数的回文串就简单一些,直接全部上2就好了

当有两个奇数的时候,我们将其放在一头一尾,然后B的第一个元素设成\(A1+1\),这样后面的情况就和只有一个奇数、并且已经放了一个1的情况一样了,剩下的构造同上

这些都其他人的题解,自己果真是不会做构造题的。

Arrays and Palindrome
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1e5+10;
int a[N],b[N*2],lis[3];
int n,m,cnt;
bool firstcheck(){
int cnt=0;
for (int i=1;i<=n;++i)
cnt+=a[i]&1;
return cnt<=2;
}
void get_b(){
int sum;
if (cnt==0){
b[++b[0]]=1; sum=m-1;
for (int i=1;i<n;++i) b[++b[0]]=a[i],sum-=a[i];
if (sum==0) return;
sum-=1; sum/=2;
for (int i=1;i<=sum/2;++i) b[++b[0]]=2;
b[++b[0]]=1;
for (int i=sum/2+1;i<=sum;++i) b[++b[0]]=2;
}
else if (cnt==1){
b[++b[0]]=1;
for (int i=1;i<n;++i) b[++b[0]]=a[i];
for (int i=1;i<=(a[n]-1)/2;++i) b[++b[0]]=2;
}
else{
b[++b[0]]=a[1]+1;
for (int i=2;i<n;++i) b[++b[0]]=a[i];
for (int i=1;i<=(a[n]-1)/2;++i) b[++b[0]]=2;
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d",&m,&n);
for (int i=1;i<=n;++i) scanf("%d",a+i);
if (!firstcheck()){printf("Impossible\n"); return 0;}
cnt=0;
for (int i=1;i<=n;++i){
if ((a[i]&1))
lis[++cnt]=i;
}
if (lis[1]) swap(a[n],a[lis[1]]);
if (lis[2]) swap(a[1],a[lis[2]]);
for (int i=1;i<=n;++i) printf("%d ",a[i]); printf("\n"); get_b();
printf("%d\n",b[0]);
for (int i=1;i<=b[0];++i) printf("%d ",b[i]); printf("\n");
}

\(E\ BBQ Hard\)

考虑求这么一个柿子。

\(\sum_i^n\sum_{j = i + 1}^n\binom{a_i + b_i + a_j + b_j}{a_i + a_j}\)

好精妙的一个题目。发现虽然\(n^2\)不在我们的承受范围内,但是\(A^2\)在,看到这种特殊的数据范围,我们应该保持敏感。

我们考虑组合意义\(\binom{a_i + b_i + a_j + b_j}{a_i + a_j}\)为\((-a_i,-b_i)\)到\((a_j,b_j)\)的方案数。

考虑直接\(dp\)求得。

然后变形柿子,

\(Ans = \frac{1}{2}(\sum_i^n\sum_{j}^n\binom{a_i + b_i + a_j + b_j}{a_i + a_j} - \binom{a_i + b_i + a_i + b_i}{a_i + a_i})\)

BBQHard
#include<iostream>
#include<cstdio>
#define ll long long
#define N 2005
#define mod 1000000007 ll f[2 * N + 5][2 * N + 5],a[N * 100],b[N * 100],s[4 * N + 5],inv[4 * N + 5];
ll n; inline ll C(ll a,ll b){return (s[a] * inv[b] % mod * inv[a - b] % mod) % mod;} inline ll pow(ll a,ll b){
ll ans = 1;
while(b){
if(b & 1)
ans = a * ans % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
} ll ans = 0; int main(){
scanf("%lld",&n);
for(int i = 1;i <= n;++i)
scanf("%lld%lld",&a[i],&b[i]),f[N - a[i]][N - b[i]] ++ ;
for(int i = 1;i <= 2 * N;++i)
for(int j = 1;j <= 2 * N;++j)
f[i][j] = (f[i - 1][j] + f[i][j - 1] + f[i][j]) % mod;
s[0] = 1;
for(int i = 1;i <= 4 * N;++i)
s[i] = (s[i - 1] * i) % mod;
inv[4 * N] = pow(s[4 * N],mod - 2);
for(int i = 4 * N - 1;i >= 1;--i)
inv[i] = (inv[i + 1] * (i + 1)) % mod;
for(int i = 1;i <= n;++i)
ans = (ans + f[N + a[i]][N + b[i]] - C(a[i] + a[i] + b[i] + b[i],a[i] + a[i]) + mod) % mod;
std::cout<<(ans * inv[2] % mod)%mod<<std::endl;
}

\(F\ Wide Swap\)

不太会做的。

题解都看了挺久的。

考虑先把这个序列变换一下成为\(Q\)

使\(Q_{p_i} = i\)

那么也是尽量让\(Q\)的排列更小。

那么对于一个\(Q_i - Q_j\)的绝对值小于\(k\)的数值\(Q_i,Q_j\)其相对位置是不变的。

这个大小关系具有传递性,所以一个点只要向他的边界连边就行了。

然后拓扑序列一下就好了(注意要把所有边反向,然后拓扑排序(也就是倒着拓扑排序),但每次优先取编号最大的点,拓扑编号也从 N 往 1 编号)。

代码鸽了。

(总算是写完一套\(AGC\)了,感觉没几题会做的。继续努力吧)

AGC-002

\(A\)

直接考虑判断。

代码不放了。

\(B\ Box and Ball\)

考虑维护这些东西,每个盒子的大小:now[x],以及当前是否有可能有红球may[x]

直接模拟维护就好,最后统计答案。

Box and Ball
#include<iostream>
#include<cstdio>
#define ll long long
#define N 100005 ll n,m,now[N];
bool may[N],out[N]; int main(){
scanf("%lld%lld",&n,&m);
may[1] = 1;
for(int i = 1;i <= n;++i)
now[i] = 1;
for(int i = 1;i <= m;++i){
ll x,y;
scanf("%lld%lld",&x,&y);
if(now[x]){
if(may[x]){
may[y] = may[x];
}
now[x] -- ,now[y] ++ ;
if(!now[x])
may[x] = 0;
}
}
ll ans = 0;
for(int i = 1;i <= n;++i)
if(may[i])
ans ++ ;
std::cout<<ans<<std::endl;
}

[AGC002C] Knot Puzzle

这题写了个不知名贪心。

正确性确实会证。

但是没过。。。

所以先鸽着。

[AGC002E] Candy Piles

开始觉得是对抗搜索,后来觉得是博弈论推结论,后来发现是神仙题。

考虑先把所有的数都排序,那么每次的操作就是把左边一列删除,或者把下面一行删除,那么很轻松的就能求出

观察性质,则有在对角线上的颜色都是一样的,且同一列和同一行的颜色交替出现,那么判断一下(0,0)是不是必胜点就行了。

[AGC002E] Candy Piles
#include <bits/stdc++.h>
using namespace std;
typedef long long LL; template <class T>
inline void read(T &x) {
x = 0;
char c = getchar();
bool f = 0;
for (; !isdigit(c); c = getchar()) f ^= c == '-';
for (; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
x = f ? -x : x;
} template <class T>
inline void write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
T y = 1;
int len = 1;
for (; y <= x / 10; y *= 10) ++len;
for (; len; --len, x %= y, y /= 10) putchar(x / y + 48);
} const int MAXN = 1e5;
int n, a[MAXN + 5]; int main() {
read(n);
for (int i = 1; i <= n; ++i) read(a[i]);
sort(a + 1, a + n + 1, greater<int>());
for (int i = 1; i <= n; ++i)
if (i + 1 > a[i + 1]) {//找到以原点为左下角的最大正方形,其右上方顶点为 (i, i)
int j = 0;
for (; a[j + i + 1] == i; ++j);
if (((a[i] - i) & 1) || (j & 1)) puts("First");
else puts("Second");
break;
}
return 0;
}

这题之后可能会另开一个博客。感觉全写在这里有点乱

【AGC板刷记录】的更多相关文章

  1. 【做题记录】AtCoder AGC做题记录

    做一下AtCoder的AGC锻炼一下思维吧 目前已做题数: 75 总共题数: 239 每一场比赛后面的字母是做完的题,括号里是写完题解的题 AGC001: ABCDEF (DEF) AGC002: A ...

  2. NOIP2018前的一些计划&记录(日更)

    先空着,等停课了再开始写. 诸位好,我是yyb.现在显然已经不再是高一的小蒟蒻了,已经升级为了高二的菜鸡了 现在已经不能再每天划划水切切题了,毕竟......已经高二了,所有的机会从高一的两倍全部除了 ...

  3. Atcoder/Topcoder 口胡记录

    Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...

  4. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  5. FJOI2017前做题记录

    FJOI2017前做题记录 2017-04-15 [ZJOI2017] 树状数组 问题转化后,变成区间随机将一个数异或一,询问两个位置的值相等的概率.(注意特判询问有一个区间的左端点为1的情况,因为题 ...

  6. 三个 AGC D(AGC037D、AGC043D、AGC050D)

    大概就 lxr 讲了 4 个 AGC 的 D,有一个以前做过了不算,另外三个都会做罢( 为了避免开三个博客就把它们合并到一起了 AGC 037 D lxr:难度顺序排列大概是 037<043&l ...

  7. 【AGC】引导用户购买提升用户留存率

    借助AGC的云数据库.云托管.应用内消息.App Linking等服务,您可以给不同价值用户设置不同的优惠套餐活动,引导用户持续购买,增强用户黏性.判断用户价值,发送营销短信,引导用户参与营销活动,提 ...

  8. 【AGC】如何快速部署Serverless Url缩短模板

    使用场景 Serverless短URL生成模板实现您将在云数据库服务中URL缩短的诉求.使用此模板后,仅需在云数据库服务侧配置长URL值.Serverless短URL生成模板会在后台与Bitly AP ...

  9. 【AGC】如何使用认证服务与云数据库处理用户信息

    ​使用场景 华为 AGC认证服务可以为应用快速构建安全可靠的用户认证系统,可以实现多种方式关联认证登录.而如何处理这些多种登录方式的用户信息,例如在应用中发布一个活动,哪些用户参加了哪一个活动,这些信 ...

随机推荐

  1. 【UE4 调试】C++ 常见编译 warnnings/errors

    error LNK2019: unresolved external symbol "" referenced in function 描述 Link错误.无法解析的外部符号 解决 ...

  2. 整数划分为k份

    题目 将整数n分成k份,且每份不能为空,任意两个方案不能相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有多少种不同的分法. 输入 ...

  3. springcloud(二) 微服务架构编码构建

    微服务架构编码构建 1 基础知识 1.1 版本 2 微服务cloud整体聚合父工程Project 2.1 new project 2.2 字符编码设置 utf-8 2.3 pom.xml 2.4 父工 ...

  4. Golang通脉之错误处理

    在实际工程项目中,总是通过程序的错误信息快速定位问题,但是又不希望错误处理代码写的冗余而又啰嗦.Go语言没有提供像Java.C#语言中的try...catch异常处理方式,而是通过函数返回值逐层往上抛 ...

  5. (五)、Docker 容器数据卷

    1.什么是数据卷 将运用与运行的环境打包形成容器运行 ,运行可以伴随着容器,但是我们对数据的要求希望是持久化的 容器之间希望有可能共享数据 Docker容器产生的数据,如果不通过docker comm ...

  6. Noip模拟19(炸裂的开始) 2021.7.18

    T1 u 差分与前缀的综合练习. 分析数据范围,只能是在修改的时候$O(1)$做到,那么只能是像打标记一样处理那个三角形 正解是建立两个二位前缀和,一个控制竖向,一个控制斜向 每次在三角的左上,右下, ...

  7. Python大数据应用

    一.三国演义人物出场统计 先检查安装包 1.jieba库基本介绍 (1)jieba库概述 jieba是优秀的中文分词第三方库 中文文本需要通过分词获得单个的词语 jieba是优秀的中文分词第三方库,需 ...

  8. 攻防世界 杂项 1.base64÷4

    666C61677B45333342374644384133423834314341393639394544444241323442363041417D 根据题目base64÷4得base16 在线工 ...

  9. 洛谷 P5657 [CSP-S2019] 格雷码

    链接: P5657 分析: 签到题,不过也有不少细节. 数据范围需要开 unsigned long long ,前年也有很多人因此丢了5分. pow 会出现神必错误,需要手写一个 mpow 函数. 算 ...

  10. Kubernetes Deployment 源码分析(二)

    概述startDeploymentController 入口逻辑DeploymentController 对象DeploymentController 类型定义DeploymentController ...