Codeforces 1149C - Tree Generator™(线段树+转化+标记维护)
首先考虑这个所谓的“括号树”与直径的本质是什么。考虑括号树上两点 \(x,y\),我们不妨用一个“DFS”的过程来理解,在 DFS 过程中假设我们在第 \(l\) 个字符后访问 \(x\),显然接下来会访问 \(x\) 的子树并回到 \(x\),也就是说对应的括号序列是一个合法括号序列,也就是说它的左右括号相抵消了,紧接着我们会向上回溯到 \(\text{LCA}(x,y)\),对于在回溯的过程中访问的点 \(z\),我们可能还会访问它的其它子树,不过由于最终回到了 \(z\),所经过的括号串一定是一个合法括号序列,最终不能相抵消的部分一定是 \(dep_x-dep_{\text{LCA}(x,y)}\) 个右括号,换句话说,从 \(x\) 到 \(\text{LCA}(x,y)\),其经过的路径进行左右括号抵消后一定是若干个右括号拼起来的字符串。同理,从 \(\text{LCA}(x,y)\to y\) 一定是若干个左括号拼起来的字符串,也就是说 \(x,y\) 之间的路径长度就是 \([l,r]\) 进行左括号相抵消后剩余部分的长度,我们记该值为 \(f(l,r)\)。而显然 \(\forall 1\leq l\leq r\leq 2(n-1)\),区间 \([l,r]\) 都对应一对 \((x,y)\)。故答案即为 \(\max\limits_{1\leq l\leq r\leq 2(n-1)}f(l,r)\)。
然后我就在那儿一直想怎样直接维护 \(f(l,r)\),心态爆炸……似乎 ycx 也卡在了这个地方?
根据 \(f(l,r)\) 的定义不难发现这玩意儿直接维护是不太容易的,因为合并两个区间时还需考虑左右括号相消的问题。如果我们能够将其变成类似于求和、取 \(\max\) 的东西是不是就比较好维护了呢?
我们假设 \([l,r]\) 消完之后剩余 \(x\) 个右括号,\(y\) 个左括号。考虑套路地将 (
看作 \(1\),)
看作 \(-1\)。对 \([l,r]\) 进行一遍前缀和得到数组 \(s_i\)(或者说 \(s_i\) 表示区间 \([l,i]\) 中左括号个数 \(-\) 右括号个数),那么显然 \(\min_{i=l}^rs_i=-x\)。
看到这个 \(\min\) 能想到什么呢?
考虑设 \(s_k=-x\),我们不妨将区间 \([l,r]\) 从 \(k\) 处劈开,劈成两个子区间 \([l,k],[k+1,r]\),显然 \([l,k]\) 中左右相消后一定是 \(x\) 个左括号,\([k+1,r]\) 中左右相消后一定是 \(y\) 个右括号。如果我们记 \(sum(l,r)\) 为 \([l,r]\) 中所有数字和。那么有 \(sum(l,k)=-x,sum(k+1,r)=y\),故 \(sum(k+1,r)-sum(l,k)=x+y\)。而对于某个 \(k'\in[l,r),k'\neq k\),由 \(\min_{i=l}^rs_i=-x\) 知 \(s_k\le s'_k\) 知 \(sum(k+1,r)-sum(l,k')=sum(l,r)-2sum(l,k)=sum(l,r)-2s_{k'}\le sum(l,r)-2s_k=x+y\),故 \(f(l,r)=x+y=\max\limits_{k=l}^{r-1}\{sum(k+1,r)-sum(l,k)\}\)
于是最终答案即为 \(\max\limits_{1\leq l\leq r\leq 2(n-1)}\max\limits_{k=l}^{r-1}\{sum(k+1,r)-sum(l,k)\}\),也就是第一篇题解中所说的“选择相邻两段并做差的最大值”。
这个就可以用线段树维护了,每个节点 \([l,r]\) 维护以下八个值:
- \(sum\) 表示 \(sum(l,r)\)
- \(lmx\) 表示 \(\max sum(l,k)\)
- \(rmx\) 表示 \(\max sum(k,r)\)
- \(lmn\) 表示 \(\min sum(l,k)\)
- \(rmn\) 表示 \(\min sum(k,r)\)
- \(mx1\) 表示 \(\max sum(x,y)-sum(l,x),l\leq x\le y\le r\)
- \(mx2\) 表示 \(\max sum(y,x)-sum(x,y),l\leq x\leq y\le r\)
- \(mx\) 表示 \(\max sum(y,z)-sum(x,y),l\leq x\leq y\leq z\leq r\)
以上八个标记都可 \(\mathcal O(1)\) pushup
,具体见代码。
至于修改……这个就相当容易了罢,直接单点修改即可。
时间复杂度线对。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=2e5;
int n,qu;char str[MAXN+5];
struct node{int l,r,sum,lmx,rmx,lmn,rmn,mx1,mx2,mx;} s[MAXN*4+5];
void pushup(int k){
s[k].sum=s[k<<1].sum+s[k<<1|1].sum;
s[k].lmx=max(s[k<<1].lmx,s[k<<1].sum+s[k<<1|1].lmx);
s[k].lmn=min(s[k<<1].lmn,s[k<<1].sum+s[k<<1|1].lmn);
s[k].rmx=max(s[k<<1|1].rmx,s[k<<1|1].sum+s[k<<1].rmx);
s[k].rmn=min(s[k<<1|1].rmn,s[k<<1|1].sum+s[k<<1].rmn);
s[k].mx1=max(s[k<<1].mx1,max(-s[k<<1].sum+s[k<<1|1].mx1,s[k<<1|1].lmx+s[k<<1].rmx*2-s[k<<1].sum));
s[k].mx2=max(s[k<<1|1].mx2,max(s[k<<1|1].sum+s[k<<1].mx2,-s[k<<1].rmn+s[k<<1|1].sum-2*s[k<<1|1].lmn));
s[k].mx=max(max(s[k<<1].mx,s[k<<1|1].mx),max(s[k<<1].mx2+s[k<<1|1].lmx,-s[k<<1].rmn+s[k<<1|1].mx1));
}
void build(int k=1,int l=1,int r=n){
s[k].l=l;s[k].r=r;
if(l==r){
if(str[l]=='(') s[k].sum=1,s[k].lmx=1,s[k].rmx=1,s[k].lmn=0,s[k].rmn=0;
else s[k].sum=-1,s[k].lmx=0,s[k].rmx=0,s[k].lmn=-1,s[k].rmn=-1;
s[k].mx1=1;s[k].mx2=1;s[k].mx=1;return;
} int mid=l+r>>1;build(k<<1,l,mid);build(k<<1|1,mid+1,r);
pushup(k);
}
void modify(int k,int p,int v){
if(s[k].l==s[k].r){
s[k].lmx=s[k].rmx=max(v,0);
s[k].lmn=s[k].rmn=min(v,0);
s[k].sum=v;
s[k].mx1=1;s[k].mx2=1;s[k].mx=1;return;
} int mid=s[k].l+s[k].r>>1;
if(p<=mid) modify(k<<1,p,v);
else modify(k<<1|1,p,v);
pushup(k);
}
int main(){
scanf("%d%d%s",&n,&qu,str+1);n=(n-1)<<1;
build(1,1,n);printf("%d\n",s[1].mx);
while(qu--){
int x,y;scanf("%d%d",&x,&y);
if(str[x]!=str[y]){
swap(str[x],str[y]);
modify(1,x,(str[x]=='(')?1:-1);
modify(1,y,(str[y]=='(')?1:-1);
} printf("%d\n",s[1].mx);
}
return 0;
}
Codeforces 1149C - Tree Generator™(线段树+转化+标记维护)的更多相关文章
- codeforces 447E or 446C 线段树 + fib性质或二次剩余性质
CF446C题意: 给你一个数列\(a_i\),有两种操作:区间求和:\(\sum_{i=l}^{r}(a[i]+=fib[i-l+1])\).\(fib\)是斐波那契数列. 思路 (一) codef ...
- [Codeforces 1199D]Welfare State(线段树)
[Codeforces 1199D]Welfare State(线段树) 题面 给出一个长度为n的序列,有q次操作,操作有2种 1.单点修改,把\(a_x\)修改成y 2.区间修改,把序列中值< ...
- hdu-3397 Sequence operation 线段树多种标记
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3397 题目大意: 0 a b表示a-b区间置为0 1 a b表示a-b区间置为1 2 a b表示a- ...
- HDU 3468:A Simple Problem with Integers(线段树+延迟标记)
A Simple Problem with Integers Case Time Limit: 2000MS Description You have N integers, A1, A2, ... ...
- [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)
[Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...
- [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)
[Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...
- CodeForces 228D. Zigzag(线段树暴力)
D. Zigzag time limit per test 3 seconds memory limit per test 256 megabytes input standard input out ...
- hdu 5274 Dylans loves tree(LCA + 线段树)
Dylans loves tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- BZOJ_2212_[Poi2011]Tree Rotations_线段树合并
BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...
随机推荐
- sql_exporter的使用
sql_exporter的使用 一.背景 二.sql-exporter的使用 1.下载 2.配置文件 1.sql_exporter.yml 2.collectors 目录中的配置文件 1.collec ...
- RocketMQ源码详解 | Producer篇 · 其二:消息组成、发送链路
概述 在上一节 RocketMQ源码详解 | Producer篇 · 其一:Start,然后 Send 一条消息 中,我们了解了 Producer 在发送消息的流程.这次我们再来具体下看消息的构成与其 ...
- [调试笔记] 10.8模拟赛11 T4 甜圈
这题正解线段树维护哈希,同机房神犇已经讲的很明白了.这里只说sbwzx在调试的时候犯的sb错误. 1.关于pushdown和update 众所周知,sbwzx一写带lazy的线段树,就必在pushdo ...
- 洛谷 P6075 [JSOI2015]子集选取
链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...
- HTML js 页面倒计时后跳转至新页面
HTML: 1 <body> 2 <p>操作错误!还有<span id="sp">5</span>秒跳转到交换机备份页面...< ...
- SpringCloud 2020.0.4 系列之 JWT用户鉴权
1. 概述 老话说的好:善待他人就是善待自己,虽然可能有所付出,但也能得到应有的收获. 言归正传,之前我们聊了 Gateway 组件,今天来聊一下如何使用 JWT 技术给用户授权,以及如果在 Gate ...
- 三(二)、AOP配置
一.AOP的配置(注解) 步骤一.导入jar包: 处理那5个jar包之外,还需要导入: aopalliance aspectjweaver spring-aop spring-aspects 步骤二. ...
- 八. Go并发编程--errGroup
一. 前言 了解 sync.WaitGroup的用法都知道 一个 goroutine 需要等待多个 goroutine 完成和多个 goroutine 等待一个 goroutine 干活时都可以解决问 ...
- fiddler 手机+浏览器 抓包
用fiddler对手机上的程序进行抓包 前提: 1.必须确保安装fiddler的电脑和手机在同一个wifi环境下 备注:如果电脑用的是台式机,可以安装一个随身wifi,来确保台式机和手机在同一wi ...
- v-bind使用
v-bind基本使用 动态地绑定一个或多个属性,或者绑定一个组件 prop 到表达式. 语法:v-bind:属性名 = 属性值 <!-- 绑定一个 attribute --> <im ...