Codeforces 848C Goodbye Souvenir(CDQ 分治)
考虑记录每个点的前驱 \(pre_x\),显然答案为 \(\sum\limits_{i=l}^{r} i-pre_i (pre_i \geq l)\)
我们建立一个平面直角坐标系,\(x\) 轴表示下标 \(i\),\(y\) 轴表示前驱 \(pre_i\),点权为 \(i-pre_i\)。
每次询问以 \((l,l)\) 为左下角,\((r,n)\) 为右下角的矩形中所有点的权值和。
至于修改操作,就是撤销上次操作的贡献,加入新的贡献。
至此,我们就把问题转化为单点加,矩形和的问题,再加上有时间轴,三维偏序,故可用 CDQ 分治维护。
/*
Contest: -
Problem: Codeforces 848C
Author: tzc_wk
Time: 2020.7.17
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define fillsmall(a) memset(a,0xcf,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
#define int long long
typedef pair<int,int> pii;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
const int INF=1e9;
int n=read(),m=read(),k=0,ans[1000005],a[100005];
struct data{
int t,p2,p1,p3;
} p[1000005],tmp[1000005];
set<int> st[100005];
struct BIT{
int bit[2000005];
inline void add(int x,int v){
x++;
for(int i=x;i<=n+1;i+=(i&(-i))) bit[i]+=v;
}
inline int query(int x){
x++;
int sum=0;
for(int i=x;i;i-=(i&(-i))) sum+=bit[i];
return sum;
}
} t;
inline void merge(int l,int r,int mid){
int p1=l,p2=mid+1;
for(int i=l;i<=r;i++){
if(p1<=mid&&(p2>r||p[p1].p2<p[p2].p2))
tmp[i]=p[p1++];
else
tmp[i]=p[p2++];
}
for(int i=l;i<=r;i++){
p[i]=tmp[i];
}
}
inline void CDQ(int l,int r){
if(l==r) return;
int mid=(l+r)>>1;
CDQ(l,mid);CDQ(mid+1,r);
// printf("%d %d\n",l,r);
int cur=l;
for(int i=mid+1;i<=r;i++){
if(p[i].p3!=-INF) continue;
while(cur<=mid&&p[cur].p2<=p[i].p2){
if(p[cur].p3!=-INF) t.add(p[cur].p1,p[cur].p3);
cur++;
}
ans[p[i].t]+=t.query(n)-t.query(p[i].p1-1);
}
fz(i,l,cur-1) if(p[i].p3!=-INF) t.add(p[i].p1,-p[i].p3);
merge(l,r,mid);
}
signed main(){
fz(i,1,n) a[i]=read();
fz(i,1,n) st[i].insert(0);
fz(i,1,n){
p[++k]={k,i,*st[a[i]].rbegin(),i-*st[a[i]].rbegin()};
st[a[i]].insert(i);
}
fz(i,1,n) st[i].insert(n+1);
fill1(ans);
fz(i,1,m){
int op=read(),x=read(),y=read();
if(op==1){
set<int>::iterator pre=--st[a[x]].lower_bound(x);
set<int>::iterator nxt=st[a[x]].upper_bound(x);
p[++k]={k,*nxt,x,-((*nxt)-x)};
p[++k]={k,x,*pre,-(x-(*pre))};
p[++k]={k,*nxt,*pre,(*nxt)-(*pre)};
st[a[x]].erase(x);
a[x]=y;
pre=--st[a[x]].lower_bound(x);
nxt=st[a[x]].upper_bound(x);
p[++k]={k,*nxt,x,((*nxt)-x)};
p[++k]={k,x,*pre,(x-(*pre))};
p[++k]={k,*nxt,*pre,-((*nxt)-(*pre))};
st[a[x]].insert(x);
}
else{
p[++k]={k,y,x,-INF};
ans[k]=0;
}
}
// fz(i,1,k){
// printf("%d %d %d %d\n",p[i].t,p[i].p1,p[i].p2,p[i].p3);
// }
// puts("-1");
CDQ(1,k);
fz(i,1,k) if(ans[i]!=-1) printf("%lld\n",ans[i]);
return 0;
}
Codeforces 848C Goodbye Souvenir(CDQ 分治)的更多相关文章
- Codeforces 848C Goodbye Souvenir [CDQ分治,二维数点]
洛谷 Codeforces 这题我写了四种做法-- 思路 不管做法怎样,思路都是一样的. 好吧,其实不一样,有细微的差别. 第一种 考虑位置\(x\)对区间\([l,r]\)有\(\pm x\)的贡献 ...
- [Codeforces]848C - Goodbye Souvenir
题目大意:n个数字,m次操作,支持修改一个数字和查询一个区间内每种数字最大出现位置减最小出现位置的和.(n,m<=100,000) 做法:把每个数字表示成二维平面上的点,第一维是在数组中的位置, ...
- CF848C:Goodbye Souvenir(CDQ分治)
Description 给定长度为$n$的数组, 定义数字$X$在$[l,r]$内的值为数字$X$在$[l,r]$内最后一次出现位置的下标减去第一次出现位置的下标给定$m$次询问, 每次询问有三个整数 ...
- [Codeforces]849E Goodbye Souvenir
又是一道比较新的模板题吧,即使是在Codeforces上小C还是贴了出来. Description 给定一个长度为n的序列a1~an,每个元素代表一种颜色.m次操作,每次操作为两种中的一种: 1 p ...
- Codeforces 1045G AI robots [CDQ分治]
洛谷 Codeforces 简单的CDQ分治题. 由于对话要求互相看见,无法简单地用树套树切掉,考虑CDQ分治. 按视野从大到小排序,这样只要右边能看见左边就可以保证互相看见. 发现\(K\)固定,那 ...
- Codeforces 526F Pudding Monsters - CDQ分治 - 桶排序
In this problem you will meet the simplified model of game Pudding Monsters. An important process in ...
- Codeforces 848C (cdq分治)
Codeforces 848C Goodbye Souvenir Problem : 给一个长度为n的序列,有q个询问.一种询问是修改某个位置的数,另一种询问是询问一段区间,对于每一种值出现的最右端点 ...
- 【Codeforces 848C】Goodbye Souvenir
Codeforces 848 C 题意:给\(n\)个数,\(m\)个询问,每一个询问有以下类型: 1 p x:将第p位改成x. 2 l r:求出\([l,r]\)区间中每一个出现的数的最后一次出现位 ...
- Codeforces 1093E Intersection of Permutations [CDQ分治]
洛谷 Codeforces 思路 一开始想到莫队+bitset,发现要T. 再想到分块+bitset,脑子一抽竟然直接开始写了,当然也T了. 最后发现这就是个裸的CDQ分治-- 发现\(a\)不变,可 ...
随机推荐
- 分布式系统ID
Leaf--美团点评分布式ID生成系统 前言 在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识.如在美团点评的金融.支付.餐饮.酒店.猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需 ...
- CentOS 文本编辑器
目录 1.Nano 1.1.基础命令 1.2.快捷操作 1.3.配置文件 2.Vim 2.1.四大模式 2.2.基础命令 2.3.标准操作 2.4.高级操作 2.5.配置文件 Linux 终端的文本编 ...
- Java:String对象小记
Java:String对象小记 对 Java 中的 String 对象,做一个微不足道的小小小小记 字节和字符的区别 字节 byte: 一个字节包含8个位(bit),因此byte的取值范围为-128~ ...
- OO面向对象第三次作业总结
面向对象第三次作业总结 一.JML基础梳理及工具链 注释结构 行注释://@annotation 块注释:/*@ annotation @*/ 两种注释都是放在被注释部分上面. 常见表达式 原子表达式 ...
- logstash收集的日志输出到elasticsearch中
logstash收集的日志输出到elasticsearch中 一.需求 二.实现步骤 1.编写pipeline文件 1.`elasticsearch`配置参数解析: 2.可能会报的一个异常 2.准备测 ...
- PromQL的简单使用
PromQL的简单使用 一.背景 二.PromQL的数据类型 三.字面量 1.字符串字面量 2.浮点数字面量 四.时间序列选择器 1.即时向量选择器 1.组成部分 2.指标名称和匹配器的组合 3.匹配 ...
- elf文件--基于《ctf竞赛权威指南pwn篇》
1.ELF概念: ELF(Executable and Linkable Format),即"可执行可链接格式",最初由UNIX系统实验室作为应用程序二进制接口(Applicati ...
- lollipop_softap启动wifi ap失败
最近一直在调试lollipop,翻译成中文好像是棒棒糖的意思,就是个wifi控制管理工具,比如设置DLNA或者WFD模式等,其原理是通过本地通信工具sockets控制其他接口来启动wpa_suplic ...
- hdu 2159 FATE(DP)
题意: 小余玩游戏,离最后一级还需n的经验值,但是他已经很厌烦了,还剩下m的忍耐度.每杀一只怪小余会得到相应的经验,同时减掉相应的忍耐度. 当忍耐度降到0或者0以下时,小余就不会再玩这个游戏.小余还说 ...
- Spring源码学习之容器的基本实现(一)
前言 最近学习了<<Spring源码深度解析>>受益匪浅,本博客是对学习内容的一个总结.分享,方便日后自己复习或与一同学习的小伙伴一起探讨之用. 建议与源码配合使用,效果更嘉, ...