Solution -「洛谷 P5827」点双连通图计数
\(\mathcal{Description}\)
link.
求有 \(n\) 个结点的点双连通图的个数,对 \(998244353\) 取模。
\(n\le10^5\)。
\(\mathcal{Solution}\)
奇怪的 GF 增加了 w!
对于带标号简单无向图,其 \(\text{EGF}\) 为 \(F(x)=\displaystyle\sum_{i=0}^{+\infty}\frac{2^{i\choose2}x^i}{i!}\)(任意两点间有连与不连两种情况。)在此基础上,我们要求图连通(注意这里不是点双连通),即对于带标号简单连通无向图,\(\text{EGF}\) 有 \(G(x)=\ln F(x)\)。
以下规定所有的图都是带标号的简单无向图。设有根连通图的 \(\text{EGF}\) 为 \(D(x)\),显然 \(D(x)=nG(x)\)。并设 \(i\) 个结点的点双连通图个数为 \(b_i\)。考虑任意一个简单无向图的根,它可能被包含在多个点双中。首先特判掉 \(n=1\) ——单点的情况。现在对于每一个不是根且在点双连通分量上的点,我们都可以在上面插上一个以其为根的无向连通图,并且不会影响到包含原来的根的任何点双连通分量的大小。所以每一个点双块的 \(\text{EGF}\) 是:
\]
令 \(B(x)=\sum_{i=0}^{+\infty}b_{i+1}\frac{x^i}{i!}\),我们反过来表示 \(D(x)\),则:
\]
开始推式子,先对上式变形:
\]
令 \(D^{-1}\) 是 \(D\) 的复合逆,代入得:
\]
令 \(H(x)=\ln\frac{D(x)}x\),那么有 \(B(x)=H\left(D^{-1}(x)\right)\)。利用扩展拉格朗日反演,有:
\]
把后面的多项式幂变形,并交换分子分母以便运算,得:
\]
\(D\) 易求,那么整个式子都能用亿堆多项式模板算出来。复杂度 \(\mathcal O(n\log n)\)。
\(\mathcal{Code}\)
#include <cmath>
#include <cstdio>
const int MAXN = 1 << 18, MOD = 998244353;
int n, fac[MAXN + 5], ifac[MAXN + 5], inv[MAXN + 5], F[MAXN + 5], G[MAXN + 5];
int H[MAXN + 5], lH[MAXN + 5], dH[MAXN + 5];
inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
namespace Poly {
const int G = 3;
inline void NTT ( const int n, int* A, const int tp ) {
static int lstn = -1, rev[MAXN + 5] {};
if ( lstn ^ n ) {
int lgn = log ( n ) / log ( 2 ) + 0.5;
for ( int i = 0; i < n; ++ i ) rev[i] = ( rev[i >> 1] >> 1 ) | ( ( i & 1 ) << lgn >> 1 );
lstn = n;
}
for ( int i = 0; i < n; ++ i ) if ( i < rev[i] ) A[i] ^= A[rev[i]] ^= A[i] ^= A[rev[i]];
for ( int i = 2, stp = 1; i <= n; i <<= 1, stp <<= 1 ) {
int w = qkpow ( G, ( MOD - 1 ) / i );
if ( ! ~ tp ) w = qkpow ( w, MOD - 2 );
for ( int j = 0; j < n; j += i ) {
for ( int k = j, r = 1; k < j + stp; ++ k, r = 1ll * r * w % MOD ) {
int ev = A[k], ov = 1ll * r * A[k + stp] % MOD;
A[k] = ( ev + ov ) % MOD, A[k + stp] = ( ev - ov + MOD ) % MOD;
}
}
}
if ( ! ~ tp ) for ( int i = 0; i < n; ++ i ) A[i] = 1ll * A[i] * inv[n] % MOD;
}
inline void polyDir ( const int n, const int* A, int* R ) {
for ( int i = 1; i < n; ++ i ) R[i - 1] = 1ll * i * A[i] % MOD;
R[n - 1] = 0;
}
inline void polyInt ( const int n, const int* A, int* R ) {
for ( int i = n - 1; ~ i; -- i ) R[i + 1] = 1ll * inv[i + 1] * A[i] % MOD;
R[0] = 0;
}
inline void polyInv ( const int n, const int* A, int* R ) {
static int tmp[2][MAXN + 5] {};
if ( n == 1 ) return void ( R[0] = qkpow ( A[0], MOD - 2 ) );
polyInv ( n >> 1, A, R );
for ( int i = 0; i < n; ++ i ) tmp[0][i] = A[i], tmp[1][i] = R[i];
NTT ( n << 1, tmp[0], 1 ), NTT ( n << 1, tmp[1], 1 );
for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = 1ll * tmp[0][i] * tmp[1][i] % MOD * tmp[1][i] % MOD;
NTT ( n << 1, tmp[0], -1 );
for ( int i = 0; i < n; ++ i ) R[i] = ( 2ll * R[i] % MOD - tmp[0][i] + MOD ) % MOD;
for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = tmp[1][i] = 0;
}
inline void polyLn ( const int n, const int* A, int* R ) {
static int tmp[2][MAXN + 5] {};
polyDir ( n, A, tmp[0] ), polyInv ( n, A, tmp[1] );
NTT ( n << 1, tmp[0], 1 ), NTT ( n << 1, tmp[1], 1 );
for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = 1ll * tmp[0][i] * tmp[1][i] % MOD;
NTT ( n << 1, tmp[0], -1 ), polyInt ( n << 1, tmp[0], R );
for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = tmp[1][i] = 0;
}
inline void polyExp ( const int n, const int* A, int* R ) {
static int tmp[MAXN + 5] {};
if ( n == 1 ) return void ( R[0] = 1 );
polyExp ( n >> 1, A, R ), polyLn ( n, R, tmp );
tmp[0] = ( A[0] + 1 - tmp[0] + MOD ) % MOD;
for ( int i = 1; i < n; ++ i ) tmp[i] = ( A[i] - tmp[i] + MOD ) % MOD;
NTT ( n << 1, tmp, 1 ), NTT ( n << 1, R, 1 );
for ( int i = 0; i < n << 1; ++ i ) R[i] = 1ll * R[i] * tmp[i] % MOD;
NTT ( n << 1, R, -1 );
for ( int i = n; i < n << 1; ++ i ) R[i] = tmp[i] = 0;
}
} // namespace Poly.
inline void init () {
inv[1] = fac[0] = ifac[0] = fac[1] = ifac[1] = 1;
for ( int i = 2; i <= MAXN; ++ i ) {
fac[i] = 1ll * i * fac[i - 1] % MOD;
inv[i] = 1ll * ( MOD - MOD / i ) * inv[MOD % i] % MOD;
ifac[i] = 1ll * inv[i] * ifac[i - 1] % MOD;
}
int len = MAXN >> 1;
for ( int i = 0; i < len; ++ i ) F[i] = 1ll * qkpow ( 2, ( i * ( i - 1ll ) >> 1 ) % ( MOD - 1 ) ) * ifac[i] % MOD;
Poly::polyLn ( len, F, G );
for ( int i = 0; i < len; ++ i ) G[i] = 1ll * i * G[i] % MOD;
for ( int i = 0; i < len - 1; ++ i ) G[i] = G[i + 1];
G[len - 1] = 0;
Poly::polyLn ( len, G, H ), Poly::polyDir ( len, H, dH );
Poly::NTT ( MAXN, dH, 1 );
}
inline void solve () {
int len = MAXN >> 1;
if ( ! -- n ) return void ( puts ( "1" ) );
for ( int i = 0; i < MAXN; ++ i ) F[i] = G[i] = 0;
for ( int i = 0; i < len; ++ i ) F[i] = 1ll * ( MOD - n ) % MOD * H[i] % MOD;
Poly::polyExp ( len, F, G ), Poly::NTT ( MAXN, G, 1 );
for ( int i = 0; i < MAXN; ++ i ) G[i] = 1ll * dH[i] * G[i] % MOD;
Poly::NTT ( MAXN, G, -1 );
printf ( "%d\n", int ( 1ll * inv[n] * fac[n] % MOD * G[n - 1] % MOD ) );
}
int main () {
init ();
for ( int i = 1; i <= 5; ++ i ) scanf ( "%d", &n ), solve ();
return 0;
}
Solution -「洛谷 P5827」点双连通图计数的更多相关文章
- Solution -「洛谷 P5827」边双连通图计数
\(\mathcal{Description}\) link. 求包含 \(n\) 个点的边双连通图的个数. \(n\le10^5\). \(\mathcal{Solution}\) ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Note/Solution -「洛谷 P5158」「模板」多项式快速插值
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...
- Solution -「洛谷 P5236」「模板」静态仙人掌
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路. \(n,q\le10^4\),\(m\ ...
- Solution -「洛谷 P4198」楼房重建
\(\mathcal{Description}\) Link. 给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...
- Solution -「洛谷 P6577」「模板」二分图最大权完美匹配
\(\mathcal{Description}\) Link. 给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...
- Solution -「洛谷 P6021」洪水
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...
- Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集. \(n,m\le10^5 ...
- Solution -「洛谷 P4320」道路相遇
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...
随机推荐
- 原生android webview 显示的H5页面颜色属性无法识别 - 具体解决心得
1.前言 background-color: #fc1717bf; 这个样式属性没毛病吧,浏览器都是支持的,但是在android 7.0 系统无法正确识别这个含有透明度的属性, 即bf无法识别,将默认 ...
- js 模块化 -- 基本的导出与引入class模块
1.目录结构 2.类语法与导出 class food { } //定义常量 let c = "苹果"; //正确的函数写法 food.prototype.getfood = fun ...
- Centos7 文件权限理解(持续更新)
后期排版,边学边记边敲 用户详情分析 管理员用户 root 0 虚拟用户 nobody 1-999 普通用户 test001 1000+ 输入ll命令查看当前目录文件详情 根据这张图片可知,目录 ...
- Vue系列教程(一)之初识Vue
一.Vue和MVVM Vue是一个渐进式的js框架,只注重视图层,结合了HTML+CSS+JS,非常的易用,并且有很好的生态系统,而且vue体积很小,速度很快,优化很到位. Vue技术周四MVVM开发 ...
- redis 主从复制实现
Redis 主从复制的实现 安装redis 修改redis的配置文件 redis.conf ②开启daemonize yes ③Pid文件名字 ④指定端口 ⑤Log文件名字 ⑥Dump.rdb名字 在 ...
- Spring循环依赖原理
Spring循环依赖的原理解析 1.什么是循环依赖? 我们使用Spring的时候,在一个对象中注入另一个对象,但是另外的一个对象中也包含该对象.如图: 在Student中包含了teacher的一个 ...
- HW防守 | Linux应急响应基础
最近也是拿到了启明星辰的暑期实习offer,虽然投的是安服,但主要工作是护网,昨天在公众号Timeline Sec上看到有一篇关于护网的文章,所以在这里照着人家写的在总结一下,为将来的工作打点基础. ...
- 《剑指offer》面试题31. 栈的压入、弹出序列
问题描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如,序列 {1,2,3,4,5} 是某栈的压栈序列,序列 {4,5,3,2 ...
- [STM32F4xx 学习] SPI与nRF24L01+的应用
前面已经总结过STM32Fxx的特点和传输过程,下面以nRF24L01+ 2.4GHz无线收发器为例,来说明如何使用SPI. 一.nRF24L01+ 2.4GHz无线收发器的介绍 1. 主要特性 全球 ...
- 模拟axios的创建[ 实现调用axios()自身发送请求或调用属性的方法发送请求axios.request() ]
1.axios 函数对象(可以作为函数使用去发送请求,也可以作为对象调用request方法发送请求) ❀ 一开始axios是一个函数,但是后续又给它添加上了一些属性[ 方法属性] ■ 举例子(axio ...