kube-scheduler源码分析(1)-初始化与启动分析

kube-scheduler简介

kube-scheduler组件是kubernetes中的核心组件之一,主要负责pod资源对象的调度工作,具体来说,kube-scheduler组件负责根据调度算法(包括预选算法和优选算法)将未调度的pod调度到合适的最优的node节点上。

kube-scheduler架构图

kube-scheduler的大致组成和处理流程如下图,kube-scheduler对pod、node等对象进行了list/watch,根据informer将未调度的pod放入待调度pod队列,并根据informer构建调度器cache(用于快速获取需要的node等对象),然后sched.scheduleOne方法为kube-scheduler组件调度pod的核心处理逻辑所在,从未调度pod队列中取出一个pod,经过预选与优选算法,最终选出一个最优node,然后更新cache并异步执行bind操作,也就是更新pod的nodeName字段,至此一个pod的调度工作完成。

kube-scheduler组件的分析将分为两大块进行,分别是:

(1)kube-scheduler初始化与启动分析;

(2)kube-scheduler核心处理逻辑分析。

本篇先进行kube-scheduler组件的初始化与启动分析,下篇再进行核心处理逻辑分析。

1.kube-scheduler初始化与启动分析

基于tag v1.17.4

https://github.com/kubernetes/kubernetes/releases/tag/v1.17.4

直接看到kube-scheduler的NewSchedulerCommand函数,作为kube-scheduler初始化与启动分析的入口。

NewSchedulerCommand

NewSchedulerCommand函数主要逻辑:

(1)初始化组件默认启动参数值;

(2)定义kube-scheduler组件的运行命令方法,即runCommand函数(runCommand函数最终调用Run函数来运行启动kube-scheduler组件,下面会进行Run函数的分析);

(3)kube-scheduler组件启动命令行参数解析。

  1. // cmd/kube-scheduler/app/server.go
  2. func NewSchedulerCommand(registryOptions ...Option) *cobra.Command {
  3. // 1.初始化组件默认启动参数值
  4. opts, err := options.NewOptions()
  5. if err != nil {
  6. klog.Fatalf("unable to initialize command options: %v", err)
  7. }
  8. // 2.定义kube-scheduler组件的运行命令方法,即runCommand函数
  9. cmd := &cobra.Command{
  10. Use: "kube-scheduler",
  11. Long: `The Kubernetes scheduler is a policy-rich, topology-aware,
  12. workload-specific function that significantly impacts availability, performance,
  13. and capacity. The scheduler needs to take into account individual and collective
  14. resource requirements, quality of service requirements, hardware/software/policy
  15. constraints, affinity and anti-affinity specifications, data locality, inter-workload
  16. interference, deadlines, and so on. Workload-specific requirements will be exposed
  17. through the API as necessary.`,
  18. Run: func(cmd *cobra.Command, args []string) {
  19. if err := runCommand(cmd, args, opts, registryOptions...); err != nil {
  20. fmt.Fprintf(os.Stderr, "%v\n", err)
  21. os.Exit(1)
  22. }
  23. },
  24. }
  25. // 3.组件命令行启动参数解析
  26. fs := cmd.Flags()
  27. namedFlagSets := opts.Flags()
  28. verflag.AddFlags(namedFlagSets.FlagSet("global"))
  29. globalflag.AddGlobalFlags(namedFlagSets.FlagSet("global"), cmd.Name())
  30. for _, f := range namedFlagSets.FlagSets {
  31. fs.AddFlagSet(f)
  32. }
  33. ...
  34. }

runCommand

runCommand定义了kube-scheduler组件的运行命令函数,主要看到以下两个逻辑:

(1)调用algorithmprovider.ApplyFeatureGates方法,根据FeatureGate是否开启,决定是否追加注册相应的预选和优选算法;

(2)调用Run,运行启动kube-scheduler组件。

  1. // cmd/kube-scheduler/app/server.go
  2. // runCommand runs the scheduler.
  3. func runCommand(cmd *cobra.Command, args []string, opts *options.Options, registryOptions ...Option) error {
  4. ...
  5. // Apply algorithms based on feature gates.
  6. // TODO: make configurable?
  7. algorithmprovider.ApplyFeatureGates()
  8. // Configz registration.
  9. if cz, err := configz.New("componentconfig"); err == nil {
  10. cz.Set(cc.ComponentConfig)
  11. } else {
  12. return fmt.Errorf("unable to register configz: %s", err)
  13. }
  14. ctx, cancel := context.WithCancel(context.Background())
  15. defer cancel()
  16. return Run(ctx, cc, registryOptions...)
  17. }

1.1 algorithmprovider.ApplyFeatureGates

根据FeatureGate是否开启,决定是否追加注册相应的预选和优选算法。

  1. // pkg/scheduler/algorithmprovider/plugins.go
  2. import (
  3. "k8s.io/kubernetes/pkg/scheduler/algorithmprovider/defaults"
  4. )
  5. func ApplyFeatureGates() func() {
  6. return defaults.ApplyFeatureGates()
  7. }

1.1.1 init

plugins.go文件import了defaults包,所以看defaults.ApplyFeatureGates方法之前,先来看到defaults包的init函数,主要做了内置调度算法的注册工作,包括预选算法和优选算法。

(1)先来看到defaults包中defaults.go文件init函数。

  1. // pkg/scheduler/algorithmprovider/defaults/defaults.go
  2. func init() {
  3. registerAlgorithmProvider(defaultPredicates(), defaultPriorities())
  4. }

预算算法:

  1. // pkg/scheduler/algorithmprovider/defaults/defaults.go
  2. func defaultPredicates() sets.String {
  3. return sets.NewString(
  4. predicates.NoVolumeZoneConflictPred,
  5. predicates.MaxEBSVolumeCountPred,
  6. predicates.MaxGCEPDVolumeCountPred,
  7. predicates.MaxAzureDiskVolumeCountPred,
  8. predicates.MaxCSIVolumeCountPred,
  9. predicates.MatchInterPodAffinityPred,
  10. predicates.NoDiskConflictPred,
  11. predicates.GeneralPred,
  12. predicates.PodToleratesNodeTaintsPred,
  13. predicates.CheckVolumeBindingPred,
  14. predicates.CheckNodeUnschedulablePred,
  15. )
  16. }

优选算法:

  1. // pkg/scheduler/algorithmprovider/defaults/defaults.go
  2. func defaultPriorities() sets.String {
  3. return sets.NewString(
  4. priorities.SelectorSpreadPriority,
  5. priorities.InterPodAffinityPriority,
  6. priorities.LeastRequestedPriority,
  7. priorities.BalancedResourceAllocation,
  8. priorities.NodePreferAvoidPodsPriority,
  9. priorities.NodeAffinityPriority,
  10. priorities.TaintTolerationPriority,
  11. priorities.ImageLocalityPriority,
  12. )
  13. }

registerAlgorithmProvider函数注册 algorithm provider,algorithm provider存储了所有类型的调度算法列表,包括预选算法和优选算法(只存储了算法key列表,不包含算法本身)。

  1. // pkg/scheduler/algorithmprovider/defaults/defaults.go
  2. func registerAlgorithmProvider(predSet, priSet sets.String) {
  3. // Registers algorithm providers. By default we use 'DefaultProvider', but user can specify one to be used
  4. // by specifying flag.
  5. scheduler.RegisterAlgorithmProvider(scheduler.DefaultProvider, predSet, priSet)
  6. // Cluster autoscaler friendly scheduling algorithm.
  7. scheduler.RegisterAlgorithmProvider(ClusterAutoscalerProvider, predSet,
  8. copyAndReplace(priSet, priorities.LeastRequestedPriority, priorities.MostRequestedPriority))
  9. }

最终将注册的algorithm provider赋值给变量algorithmProviderMap(存储了所有类型的调度算法列表),该变量是该包的全局变量。

  1. // pkg/scheduler/algorithm_factory.go
  2. // RegisterAlgorithmProvider registers a new algorithm provider with the algorithm registry.
  3. func RegisterAlgorithmProvider(name string, predicateKeys, priorityKeys sets.String) string {
  4. schedulerFactoryMutex.Lock()
  5. defer schedulerFactoryMutex.Unlock()
  6. validateAlgorithmNameOrDie(name)
  7. algorithmProviderMap[name] = AlgorithmProviderConfig{
  8. FitPredicateKeys: predicateKeys,
  9. PriorityFunctionKeys: priorityKeys,
  10. }
  11. return name
  12. }
  1. // pkg/scheduler/algorithm_factory.go
  2. var (
  3. ...
  4. algorithmProviderMap = make(map[string]AlgorithmProviderConfig)
  5. ...
  6. )

(2)再来看到defaults包中register_predicates.go文件的init函数,主要是注册了预选算法。

  1. // pkg/scheduler/algorithmprovider/defaults/register_predicates.go
  2. func init() {
  3. ...
  4. // Fit is defined based on the absence of port conflicts.
  5. // This predicate is actually a default predicate, because it is invoked from
  6. // predicates.GeneralPredicates()
  7. scheduler.RegisterFitPredicate(predicates.PodFitsHostPortsPred, predicates.PodFitsHostPorts)
  8. // Fit is determined by resource availability.
  9. // This predicate is actually a default predicate, because it is invoked from
  10. // predicates.GeneralPredicates()
  11. scheduler.RegisterFitPredicate(predicates.PodFitsResourcesPred, predicates.PodFitsResources)
  12. ...

(3)最后看到defaults包中register_priorities.go文件的init函数,主要是注册了优选算法。

  1. // pkg/scheduler/algorithmprovider/defaults/register_priorities.go
  2. func init() {
  3. ...
  4. // Prioritize nodes by least requested utilization.
  5. scheduler.RegisterPriorityMapReduceFunction(priorities.LeastRequestedPriority, priorities.LeastRequestedPriorityMap, nil, 1)
  6. // Prioritizes nodes to help achieve balanced resource usage
  7. scheduler.RegisterPriorityMapReduceFunction(priorities.BalancedResourceAllocation, priorities.BalancedResourceAllocationMap, nil, 1)
  8. ...
  9. }

预选算法与优选算法注册的最后结果,都是赋值给全局变量,预选算法注册后赋值给fitPredicateMap,优选算法注册后赋值给priorityFunctionMap。

  1. // pkg/scheduler/algorithm_factory.go
  2. var (
  3. ...
  4. fitPredicateMap = make(map[string]FitPredicateFactory)
  5. ...
  6. priorityFunctionMap = make(map[string]PriorityConfigFactory)
  7. ...
  8. )

1.1.2 defaults.ApplyFeatureGates

主要用于判断是否开启特定的FeatureGate,然后追加注册相应的预选和优选算法。

  1. // pkg/scheduler/algorithmprovider/defaults/defaults.go
  2. func ApplyFeatureGates() (restore func()) {
  3. ...
  4. // Only register EvenPodsSpread predicate & priority if the feature is enabled
  5. if utilfeature.DefaultFeatureGate.Enabled(features.EvenPodsSpread) {
  6. klog.Infof("Registering EvenPodsSpread predicate and priority function")
  7. // register predicate
  8. scheduler.InsertPredicateKeyToAlgorithmProviderMap(predicates.EvenPodsSpreadPred)
  9. scheduler.RegisterFitPredicate(predicates.EvenPodsSpreadPred, predicates.EvenPodsSpreadPredicate)
  10. // register priority
  11. scheduler.InsertPriorityKeyToAlgorithmProviderMap(priorities.EvenPodsSpreadPriority)
  12. scheduler.RegisterPriorityMapReduceFunction(
  13. priorities.EvenPodsSpreadPriority,
  14. priorities.CalculateEvenPodsSpreadPriorityMap,
  15. priorities.CalculateEvenPodsSpreadPriorityReduce,
  16. 1,
  17. )
  18. }
  19. // Prioritizes nodes that satisfy pod's resource limits
  20. if utilfeature.DefaultFeatureGate.Enabled(features.ResourceLimitsPriorityFunction) {
  21. klog.Infof("Registering resourcelimits priority function")
  22. scheduler.RegisterPriorityMapReduceFunction(priorities.ResourceLimitsPriority, priorities.ResourceLimitsPriorityMap, nil, 1)
  23. // Register the priority function to specific provider too.
  24. scheduler.InsertPriorityKeyToAlgorithmProviderMap(scheduler.RegisterPriorityMapReduceFunction(priorities.ResourceLimitsPriority, priorities.ResourceLimitsPriorityMap, nil, 1))
  25. }
  26. ...
  27. }

1.2 Run

Run函数主要是根据配置参数,运行启动kube-scheduler组件,其核心逻辑如下:

(1)准备好event上报client,用于将kube-scheduler产生的各种event上报给api-server;

(2)调用scheduler.New方法,实例化scheduler对象;

(3)启动event上报管理器;

(4)设置kube-scheduler组件的健康检查,并启动健康检查以及与metrics相关的http服务;

(5)启动所有前面注册过的对象的infomer,开始同步对象资源;

(6)调用WaitForCacheSync,等待所有informer的对象同步完成,使得本地缓存数据与etcd中的数据一致;

(7)根据组件启动参数判断是否要开启leader选举功能;

(8)调用sched.Run方法启动kube-scheduler组件(sched.Run将作为下面kube-scheduler核心处理逻辑分析的入口)。

  1. // cmd/kube-scheduler/app/server.go
  2. func Run(ctx context.Context, cc schedulerserverconfig.CompletedConfig, outOfTreeRegistryOptions ...Option) error {
  3. // To help debugging, immediately log version
  4. klog.V(1).Infof("Starting Kubernetes Scheduler version %+v", version.Get())
  5. outOfTreeRegistry := make(framework.Registry)
  6. for _, option := range outOfTreeRegistryOptions {
  7. if err := option(outOfTreeRegistry); err != nil {
  8. return err
  9. }
  10. }
  11. // 1.准备好event上报client,用于将kube-scheduler产生的各种event上报给api-server
  12. // Prepare event clients.
  13. if _, err := cc.Client.Discovery().ServerResourcesForGroupVersion(eventsv1beta1.SchemeGroupVersion.String()); err == nil {
  14. cc.Broadcaster = events.NewBroadcaster(&events.EventSinkImpl{Interface: cc.EventClient.Events("")})
  15. cc.Recorder = cc.Broadcaster.NewRecorder(scheme.Scheme, cc.ComponentConfig.SchedulerName)
  16. } else {
  17. recorder := cc.CoreBroadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: cc.ComponentConfig.SchedulerName})
  18. cc.Recorder = record.NewEventRecorderAdapter(recorder)
  19. }
  20. // 2.调用scheduler.New方法,实例化scheduler对象
  21. // Create the scheduler.
  22. sched, err := scheduler.New(cc.Client,
  23. cc.InformerFactory,
  24. cc.PodInformer,
  25. cc.Recorder,
  26. ctx.Done(),
  27. scheduler.WithName(cc.ComponentConfig.SchedulerName),
  28. scheduler.WithAlgorithmSource(cc.ComponentConfig.AlgorithmSource),
  29. scheduler.WithHardPodAffinitySymmetricWeight(cc.ComponentConfig.HardPodAffinitySymmetricWeight),
  30. scheduler.WithPreemptionDisabled(cc.ComponentConfig.DisablePreemption),
  31. scheduler.WithPercentageOfNodesToScore(cc.ComponentConfig.PercentageOfNodesToScore),
  32. scheduler.WithBindTimeoutSeconds(cc.ComponentConfig.BindTimeoutSeconds),
  33. scheduler.WithFrameworkOutOfTreeRegistry(outOfTreeRegistry),
  34. scheduler.WithFrameworkPlugins(cc.ComponentConfig.Plugins),
  35. scheduler.WithFrameworkPluginConfig(cc.ComponentConfig.PluginConfig),
  36. scheduler.WithPodMaxBackoffSeconds(cc.ComponentConfig.PodMaxBackoffSeconds),
  37. scheduler.WithPodInitialBackoffSeconds(cc.ComponentConfig.PodInitialBackoffSeconds),
  38. )
  39. if err != nil {
  40. return err
  41. }
  42. // 3.启动event上报管理器
  43. // Prepare the event broadcaster.
  44. if cc.Broadcaster != nil && cc.EventClient != nil {
  45. cc.Broadcaster.StartRecordingToSink(ctx.Done())
  46. }
  47. if cc.CoreBroadcaster != nil && cc.CoreEventClient != nil {
  48. cc.CoreBroadcaster.StartRecordingToSink(&corev1.EventSinkImpl{Interface: cc.CoreEventClient.Events("")})
  49. }
  50. // 4.设置kube-scheduler组件的健康检查,并启动健康检查以及与metrics相关的http服务
  51. // Setup healthz checks.
  52. var checks []healthz.HealthChecker
  53. if cc.ComponentConfig.LeaderElection.LeaderElect {
  54. checks = append(checks, cc.LeaderElection.WatchDog)
  55. }
  56. // Start up the healthz server.
  57. if cc.InsecureServing != nil {
  58. separateMetrics := cc.InsecureMetricsServing != nil
  59. handler := buildHandlerChain(newHealthzHandler(&cc.ComponentConfig, separateMetrics, checks...), nil, nil)
  60. if err := cc.InsecureServing.Serve(handler, 0, ctx.Done()); err != nil {
  61. return fmt.Errorf("failed to start healthz server: %v", err)
  62. }
  63. }
  64. if cc.InsecureMetricsServing != nil {
  65. handler := buildHandlerChain(newMetricsHandler(&cc.ComponentConfig), nil, nil)
  66. if err := cc.InsecureMetricsServing.Serve(handler, 0, ctx.Done()); err != nil {
  67. return fmt.Errorf("failed to start metrics server: %v", err)
  68. }
  69. }
  70. if cc.SecureServing != nil {
  71. handler := buildHandlerChain(newHealthzHandler(&cc.ComponentConfig, false, checks...), cc.Authentication.Authenticator, cc.Authorization.Authorizer)
  72. // TODO: handle stoppedCh returned by c.SecureServing.Serve
  73. if _, err := cc.SecureServing.Serve(handler, 0, ctx.Done()); err != nil {
  74. // fail early for secure handlers, removing the old error loop from above
  75. return fmt.Errorf("failed to start secure server: %v", err)
  76. }
  77. }
  78. // 5.启动所有前面注册过的对象的informer,开始同步对象资源
  79. // Start all informers.
  80. go cc.PodInformer.Informer().Run(ctx.Done())
  81. cc.InformerFactory.Start(ctx.Done())
  82. // 6.等待所有informer的对象同步完成,使得本地缓存数据与etcd中的数据一致
  83. // Wait for all caches to sync before scheduling.
  84. cc.InformerFactory.WaitForCacheSync(ctx.Done())
  85. // 7.根据组件启动参数判断是否要开启leader选举功能
  86. // If leader election is enabled, runCommand via LeaderElector until done and exit.
  87. if cc.LeaderElection != nil {
  88. cc.LeaderElection.Callbacks = leaderelection.LeaderCallbacks{
  89. OnStartedLeading: sched.Run,
  90. OnStoppedLeading: func() {
  91. klog.Fatalf("leaderelection lost")
  92. },
  93. }
  94. leaderElector, err := leaderelection.NewLeaderElector(*cc.LeaderElection)
  95. if err != nil {
  96. return fmt.Errorf("couldn't create leader elector: %v", err)
  97. }
  98. leaderElector.Run(ctx)
  99. return fmt.Errorf("lost lease")
  100. }
  101. // 8.调用sched.Run方法启动kube-scheduler组件
  102. // Leader election is disabled, so runCommand inline until done.
  103. sched.Run(ctx)
  104. return fmt.Errorf("finished without leader elect")
  105. }

1.2.1 scheduler.New

scheduler对象的实例化分为3个部分,分别是:

(1)实例化pod、node、pvc、pv等对象的infomer;

(2)调用configurator.CreateFromConfig,根据前面注册的内置调度算法(或根据用户提供的调度策略),实例化scheduler;

(3)给infomer对象注册eventHandler;

  1. // pkg/scheduler/scheduler.go
  2. func New(client clientset.Interface,
  3. informerFactory informers.SharedInformerFactory,
  4. podInformer coreinformers.PodInformer,
  5. recorder events.EventRecorder,
  6. stopCh <-chan struct{},
  7. opts ...Option) (*Scheduler, error) {
  8. stopEverything := stopCh
  9. if stopEverything == nil {
  10. stopEverything = wait.NeverStop
  11. }
  12. options := defaultSchedulerOptions
  13. for _, opt := range opts {
  14. opt(&options)
  15. }
  16. // 1.实例化node、pvc、pv等对象的infomer
  17. schedulerCache := internalcache.New(30*time.Second, stopEverything)
  18. volumeBinder := volumebinder.NewVolumeBinder(
  19. client,
  20. informerFactory.Core().V1().Nodes(),
  21. informerFactory.Storage().V1().CSINodes(),
  22. informerFactory.Core().V1().PersistentVolumeClaims(),
  23. informerFactory.Core().V1().PersistentVolumes(),
  24. informerFactory.Storage().V1().StorageClasses(),
  25. time.Duration(options.bindTimeoutSeconds)*time.Second,
  26. )
  27. registry := options.frameworkDefaultRegistry
  28. if registry == nil {
  29. registry = frameworkplugins.NewDefaultRegistry(&frameworkplugins.RegistryArgs{
  30. VolumeBinder: volumeBinder,
  31. })
  32. }
  33. registry.Merge(options.frameworkOutOfTreeRegistry)
  34. snapshot := nodeinfosnapshot.NewEmptySnapshot()
  35. configurator := &Configurator{
  36. client: client,
  37. informerFactory: informerFactory,
  38. podInformer: podInformer,
  39. volumeBinder: volumeBinder,
  40. schedulerCache: schedulerCache,
  41. StopEverything: stopEverything,
  42. hardPodAffinitySymmetricWeight: options.hardPodAffinitySymmetricWeight,
  43. disablePreemption: options.disablePreemption,
  44. percentageOfNodesToScore: options.percentageOfNodesToScore,
  45. bindTimeoutSeconds: options.bindTimeoutSeconds,
  46. podInitialBackoffSeconds: options.podInitialBackoffSeconds,
  47. podMaxBackoffSeconds: options.podMaxBackoffSeconds,
  48. enableNonPreempting: utilfeature.DefaultFeatureGate.Enabled(kubefeatures.NonPreemptingPriority),
  49. registry: registry,
  50. plugins: options.frameworkPlugins,
  51. pluginConfig: options.frameworkPluginConfig,
  52. pluginConfigProducerRegistry: options.frameworkConfigProducerRegistry,
  53. nodeInfoSnapshot: snapshot,
  54. algorithmFactoryArgs: AlgorithmFactoryArgs{
  55. SharedLister: snapshot,
  56. InformerFactory: informerFactory,
  57. VolumeBinder: volumeBinder,
  58. HardPodAffinitySymmetricWeight: options.hardPodAffinitySymmetricWeight,
  59. },
  60. configProducerArgs: &frameworkplugins.ConfigProducerArgs{},
  61. }
  62. metrics.Register()
  63. // 2.调用configurator.CreateFromConfig,根据前面注册的内置调度算法(或根据用户提供的调度策略),实例化scheduler
  64. var sched *Scheduler
  65. source := options.schedulerAlgorithmSource
  66. switch {
  67. case source.Provider != nil:
  68. // Create the config from a named algorithm provider.
  69. sc, err := configurator.CreateFromProvider(*source.Provider)
  70. if err != nil {
  71. return nil, fmt.Errorf("couldn't create scheduler using provider %q: %v", *source.Provider, err)
  72. }
  73. sched = sc
  74. case source.Policy != nil:
  75. // Create the config from a user specified policy source.
  76. policy := &schedulerapi.Policy{}
  77. switch {
  78. case source.Policy.File != nil:
  79. if err := initPolicyFromFile(source.Policy.File.Path, policy); err != nil {
  80. return nil, err
  81. }
  82. case source.Policy.ConfigMap != nil:
  83. if err := initPolicyFromConfigMap(client, source.Policy.ConfigMap, policy); err != nil {
  84. return nil, err
  85. }
  86. }
  87. sc, err := configurator.CreateFromConfig(*policy)
  88. if err != nil {
  89. return nil, fmt.Errorf("couldn't create scheduler from policy: %v", err)
  90. }
  91. sched = sc
  92. default:
  93. return nil, fmt.Errorf("unsupported algorithm source: %v", source)
  94. }
  95. // Additional tweaks to the config produced by the configurator.
  96. sched.Recorder = recorder
  97. sched.DisablePreemption = options.disablePreemption
  98. sched.StopEverything = stopEverything
  99. sched.podConditionUpdater = &podConditionUpdaterImpl{client}
  100. sched.podPreemptor = &podPreemptorImpl{client}
  101. sched.scheduledPodsHasSynced = podInformer.Informer().HasSynced
  102. // 3.给infomer对象注册eventHandler
  103. AddAllEventHandlers(sched, options.schedulerName, informerFactory, podInformer)
  104. return sched, nil
  105. }

总结

kube-scheduler简介

kube-scheduler组件是kubernetes中的核心组件之一,主要负责pod资源对象的调度工作,具体来说,kube-scheduler组件负责根据调度算法(包括预选算法和优选算法)将未调度的pod调度到合适的最优的node节点上。

kube-scheduler架构图

kube-scheduler的大致组成和处理流程如下图,kube-scheduler对pod、node等对象进行了list/watch,根据informer将未调度的pod放入待调度pod队列,并根据informer构建调度器cache(用于快速获取需要的node等对象),然后sched.scheduleOne方法为kube-scheduler组件调度pod的核心处理逻辑所在,从未调度pod队列中取出一个pod,经过预选与优选算法,最终选出一个最优node,然后更新cache并异步执行bind操作,也就是更新pod的nodeName字段,至此一个pod的调度工作完成。

kube-scheduler初始化与启动分析流程图

kube-scheduler源码分析(1)-初始化与启动分析的更多相关文章

  1. k8s client-go源码分析 informer源码分析(2)-初始化与启动分析

    k8s client-go源码分析 informer源码分析(2)-初始化与启动分析 前面一篇文章对k8s informer做了概要分析,本篇文章将对informer的初始化与启动进行分析. info ...

  2. scheduler源码分析——preempt抢占

    前言 之前探讨scheduler的调度流程时,提及过preempt抢占机制,它发生在预选调度失败的时候,当时由于篇幅限制就没有展开细说. 回顾一下抢占流程的主要逻辑在DefaultPreemption ...

  3. Lumen开发:lumen源码解读之初始化(4)——服务提供(ServiceProviders)与路由(Routes)

    版权声明:本文为博主原创文章,未经博主允许不得转载. 前面讲了singleton和Middleware,现在来继续讲ServiceProviders和Routes,还是看起始文件bootstrap/a ...

  4. Vue源码探究-状态初始化

    Vue源码探究-状态初始化 Vue源码探究-源码文件组织 Vue源码探究-虚拟DOM的渲染 本篇代码位于vue/src/core/instance/state.js 继续随着核心类的初始化展开探索其他 ...

  5. Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Job Manager 启动

    Job Manager 启动 https://t.zsxq.com/AurR3rN 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac ...

  6. Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Task Manager 启动

    Task Manager 启动 https://t.zsxq.com/qjEUFau 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Ma ...

  7. MySQL源码编译与初始化

    MySQL源码编译与初始化 链接:https://pan.baidu.com/s/1ANGg3Kd_28BzQrA5ya17fQ 提取码:ekpy 复制这段内容后打开百度网盘手机App,操作更方便哦 ...

  8. SpringBoot源码修炼—系统初始化器

    SpringBoot源码修炼-系统初始化器 传统SSM框架与SpringBoot框架简要对比 SSM搭建流程 缺点: 耗时长 配置文件繁琐 需要找合适版本的jar包 SpringBoot搭建流程 优点 ...

  9. Netty 4源码解析:服务端启动

    Netty 4源码解析:服务端启动 1.基础知识 1.1 Netty 4示例 因为Netty 5还处于测试版,所以选择了目前比较稳定的Netty 4作为学习对象.而且5.0的变化也不像4.0这么大,好 ...

随机推荐

  1. Python常用功能函数系列总结(二)

     本节目录 常用函数一:sel文件转换 常用函数二:refwork文件转换 常用函数三:xml文档解析 常用函数四:文本分词 常用函数一:sel文件转换 sel是种特殊的文件格式,具体应用场景的话可以 ...

  2. 信不信由你!iPhone6屏幕宽度不一定是375px,iPhone6 Plus屏幕宽度不一定是414px

    看到这个题目你可能不信,引出这个问题的缘由是几次项目中Chrome模拟器和iPhone6真机预览效果不一致. 为什么在Chrome Emulation模拟手机页面和真机预览效果不一致? 以前觉得不外乎 ...

  3. C#进程调用FFmpeg操作音视频

    项目背景 因为公司需要对音视频做一些操作,比如说对系统用户的发音和背景视频进行合成,以及对多个音视频之间进行合成,还有就是在指定的源背景音频中按照对应的规则在视频的多少秒钟内插入一段客户发音等一些复杂 ...

  4. 论文翻译:2020_FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective functions

    论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式 ...

  5. 链式printf()函数的用法

    printf()函数:十进制格式型输出函数. #include <stdio.h> int printf( const char *format, ... ); 1.首先printf的返回 ...

  6. Java将引入新的对象类型来解决内存利用问题

    2022年Java将有什么新的特性和改进,我相信很多Java开发者都想知道.结合Java语言架构师布莱恩·格茨(Brian Goetz)最近的一些分享,胖哥给大家爆个料.老规矩,点赞走起. Valha ...

  7. [Eclipse插件] 编辑插件IndentGuide

    IndentGuide插件 将可配置的缩进指导线添加到Eclipse文本编辑器 如下图

  8. 【刷题-LeetCode】207. Course Schedule

    Course Schedule There are a total of numCourses courses you have to take, labeled from 0 to numCours ...

  9. unity3d inputfield标签控制台打印object

    inputfield标签控制台打印object 这说明没有字符串给入 这是因为 inputfield下的text不能人为写入值,只能在game界面输入. 所以这个标签里的text做个默认值不好搞.

  10. promise的队列,宏任务,微任务,同步任务

    // promise里面有一个特别的任务,就是微任务 // 同步任务>微任务>宏任务 setTimeout(() => { console.log("setTimeout& ...