正题

题目链接:https://www.luogu.com.cn/problem/AT4119


题目大意

一个集合\(S=\{k\in[1,n]\cup N\}\),它的所有子集作为元素组成的集合中要求满足每一个数字的出现之和不小于\(2\),求方案数对\(P\)取模。

\(1\leq n\leq 3000,P\in[10^8,10^{9}+9]\cup Pri\)


解题思路

考虑至少\(i\)个数选择次数不超过\(1\),那么这个方案的容斥系数就是\((-1)^i\)。

考虑怎么求这个方案,我们可以先不要被限制了的数,然后再将这些被限制了的数丢进被选出了的集合中。设有\(j\)个集合包含被限制了的数,那么丢进这些集合的方案就是\(\begin{Bmatrix} i+1\\j+1 \end{Bmatrix}\)(一个数字可以选择不丢所以开一个新的集合表示这个集合内的数不使用),然后剩下的数随意的选入这些集合中就是\((2^{n-i})^j\)。

那么答案出来了

\[\sum_{i=0}^n(-1)^i2^{2^{n-i}}\binom{n}{i}\sum_{j=0}^i\begin{Bmatrix}i+1\\ j+1\end{Bmatrix}(2^{n-i})^j
\]

直接预处理斯特林数计算就好了,时间复杂度\(O(n^2)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=3100;
ll n,P,s[N][N],fac[N],ans;
ll power(ll x,ll b,ll p=P){
ll ans=1;
while(b){
if(b&1)ans=ans*x%p;
x=x*x%p;b>>=1;
}
return ans;
}
ll C(ll n,ll m)
{return fac[n]*power(fac[m],P-2)%P*power(fac[n-m],P-2)%P;}
signed main()
{
scanf("%lld%lld",&n,&P);s[0][0]=fac[0]=1;
for(ll i=1;i<=n;i++)fac[i]=fac[i-1]*i%P;
for(ll i=1;i<=n+1;i++)
for(ll j=1;j<=i;j++)
s[i][j]=(s[i-1][j-1]+j*s[i-1][j]%P)%P;
for(ll i=0;i<=n;i++){
ll sum=0,tmp=power(2,power(2,n-i,P-1));
if(i&1)tmp=P-tmp;tmp=tmp*C(n,i)%P;
for(ll j=0,z=1,p=power(2,n-i);j<=i;j++,z=z*p%P)
(sum+=s[i+1][j+1]*z%P)%=P;
(ans+=sum*tmp)%=P;
}
printf("%lld\n",ans);
return 0;
}

AT4119-[ARC096C]Everything on It【斯特林数,容斥】的更多相关文章

  1. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  2. (noip模拟十七)【BZOJ3930】[CQOI2015]选数-容斥水法

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  3. BZOJ 2287 DP+容斥

    思路: 先处理出来f[j]表示这i个物品都可用 填满容量j的方案数 容斥一发 处理出来g[j]=g[j-w[i]] 表示i不能用的时候 填满容量j的方案数 //By SiriusRen #includ ...

  4. 【CF715E】Complete the Permutations(容斥,第一类斯特林数)

    [CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...

  5. ARC096 E Everything on It [容斥,斯特林数]

    Atcoder 一个900分的题耗了我这么久--而且官方题解还那么短--必须纪念一下-- 思路 发现每种元素必须出现两次以上的限制极为恶心,所以容斥,枚举出现0/1次的元素个数分别有几个.设出现1次的 ...

  6. BZOJ.5093.[Lydsy1711月赛]图的价值(NTT 斯特林数)

    题目链接 对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:\[\sum_{i=0}^{n-1}i^kC_{n-1}^i2^{\frac{(n-2)(n-1)}{2}}\] 每个点是一样的 ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)

    题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...

  8. 【CF961G】Partitions(第二类斯特林数)

    [CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...

  9. BZOJ.4555.[HEOI2016&TJOI2016]求和(NTT 斯特林数)

    题目链接 \(Description\) 求\[\sum_{i=0}^n\sum_{j=0}^iS(i,j)\times 2^j\times j!\mod 998244353\] 其中\(S(i,j) ...

随机推荐

  1. Java:学习什么是多线程

    线程是什么 进程是对CPU的抽象,而线程更细化了进程的运行流程 先看一下这个图 线程和进程的关系有 进程中就是线程在执行,所有(主)线程执行完了进程也就结束了 多个线程从1秒钟是同时运行完成,从1纳秒 ...

  2. C#实现http协议GET、POST请求

    using System; using System.Collections.Generic; using System.Text; using System.Net; using System.Ne ...

  3. java Math.random()生成从n到m的随机整数

    Java中Math类的random()方法可以生成[0,1)之间的随机浮点数.而double类型数据强制转换成int类型,整数部分赋值给int类型变量,小数点之后的小数部分将会丢失. 如果要生成[0, ...

  4. C++ leetcode接雨水

    双指针算法"接雨水" 链接:https://leetcode-cn.com/problems/trapping-rain-water/ 给定 n 个非负整数表示每个宽度为 1 的柱 ...

  5. UWP使用命名管道与桌面程序通信 (C#)

    关于UWP的历史,其起源是Microsoft在Windows 8中引入的Metro apps.(后来又被称作Modern apps, Windows apps, Universal Windows A ...

  6. struts2思想学习(一)

    OOP 面向对象编程 AOP 面向切面编程 而在struts2 处处体现了面向切面编程的思想(动态代理最典型)! 拦截器其实也是面向切面编程!拦截器切断了所有请求到action的操作 并做了很多的前提 ...

  7. [转]dd大牛的《背包九讲》

    P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...

  8. vue-cli3.x中的webpack配置,优化及多页面应用开发

    官方文档 vue-cli3以下版本中,关于webpack的一些配置都在config目录文件中,可是vue-cli3以上版本中,没有了config目录,那该怎么配置webpack呢? 3.x初始化项目后 ...

  9. vue-父子组件之传值和单项数据流问题

    前言 我们知道 vue 中父子组件的核心概念是单项数据流问题,props 是单项传递的.那究竟什么是单项数据流问题,这篇文章来总结一下关于这个知识点的学习笔记. 正文 1.父组件传值给子组件 < ...

  10. MySQL修改配置文件 避免中文乱码

    MySQL修改配置文件 避免中文乱码 MySQL安装后默认的服务器字符集是拉丁文,也就是说默认 character_set_server = latin1 ,这是造成 MySQL 中文乱码的主要原因之 ...