[DeeplearningAI笔记]序列模型2.8 GloVe词向量
5.2自然语言处理
觉得有用的话,欢迎一起讨论相互学习~Follow Me
2.8 GloVe word vectors GloVe词向量
Pennington J, Socher R, Manning C. Glove: Global Vectors for Word Representation[C]// Conference on Empirical Methods in Natural Language Processing. 2014:1532-1543.
- 示例 I want a glass of orange juice to go along with my cereal
- 定义 \(X_{ij}\) 表示单词i在单词j上下文中出现的次数。其中i相当于Context,而j相当于Target.
- 当定义目标单词出现在上下文单词的左或右十个单词数时,此时i和j是一种对称的关系。即有\(X_{ij}=X_{ji}\)
- 因此根据此定义,得知\(X_{ij}\)就是一个能够获取单词i和单词j出现位置相近时或彼此接近是的频率的计数器
目的 Glove算法的目的就是优化
-
- 此式中\(\theta^{T}_{i}e_{j}\) 和负采样中的式子\(\theta_{t}^{T}e_c\)意义相同
- 为了解决\(X_{ij}\)可能为0的问题(因为\(log0\))的值为负无穷,引进了\(f(X_{ij})\)使得当\(X_{ij}=0时,f(X_{ij})=0\),并且会使用规定\(0log0=0\).
- 并且 ,引入的\(f(X_{ij})\)可以解决有些词语例如 this, is, of, a... 等词语出现频率过高而有些名词出现频率过低导致的不平衡问题--即\(f(X_{ij})\)相当于一个加权因子,对于不常用的词汇也能给予大量有意义的运算,而对于出现频率过高的词汇更大而不至于过分的权重。 对于此函数的具体细节,参考标题下的参考论文。
- Note \(\theta和e\)现在是完全对称的,因此一种训练参数的方法是 一致的初始化\(\theta\)和e 然后使用梯度下降来最小化输出,当每个词都处理完了之后取平均值。 即\(e_w^{final}=\frac{e_{w}+\theta_{w}}{2}\)
词嵌入向量解释
- 因为即使每行表示单词向量独特的特征,但是对于学习到的 词嵌入矩阵 其每行表示的意义不一定是 正交的 ,而是多行特征的线性表征。例如定义的第一行表示Gender,第二行表示Royal,第三行表示Age,第四行表示Food,但是实际学到的是这些特征的 使用平行四边形方法得到的线性表出 所以单独理解学到的 词嵌入矩阵 是十分困难的。
[DeeplearningAI笔记]序列模型2.8 GloVe词向量的更多相关文章
- [DeeplearningAI笔记]序列模型2.1-2.2词嵌入word embedding
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1词汇表征 Word representation 原先都是使用词汇表来表示词汇,并且使用1-hot编码的方式来表示词汇 ...
- [DeeplearningAI笔记]序列模型2.3-2.5余弦相似度/嵌入矩阵/学习词嵌入
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3词嵌入的特性 properties of word embedding Mikolov T, Yih W T, Zwe ...
- [DeeplearningAI笔记]序列模型3.7-3.8注意力模型
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.7注意力模型直观理解Attention model intuition 长序列问题 The problem of ...
- [DeeplearningAI笔记]序列模型3.6Bleu得分/机器翻译得分指标
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.6Bleu得分 在机器翻译中往往对应有多种翻译,而且同样好,此时怎样评估一个机器翻译系统是一个难题. 常见的解决 ...
- [DeeplearningAI笔记]序列模型3.3集束搜索
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.3 集束搜索Beam Search 对于机器翻译来说,给定输入的句子,会返回一个随机的英语翻译结果,但是你想要一 ...
- [DeeplearningAI笔记]序列模型3.2有条件的语言模型与贪心搜索的不可行性
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2选择最可能的句子 Picking the most likely sentence condition lan ...
- [DeeplearningAI笔记]序列模型1.10-1.12LSTM/BRNN/DeepRNN
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10长短期记忆网络(Long short term memory)LSTM Hochreiter S, Schmidhu ...
- [DeeplearningAI笔记]序列模型1.7-1.9RNN对新序列采样/GRU门控循环神经网络
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.7对新序列采样 基于词汇进行采样模型 在训练完一个模型之后你想要知道模型学到了什么,一种非正式的方法就是进行一次新序列采 ...
- [DeeplearningAI笔记]序列模型1.5-1.6不同类型的循环神经网络/语言模型与序列生成
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.5不同类型的循环神经网络 上节中介绍的是 具有相同长度输入序列和输出序列的循环神经网络,但是对于很多应用\(T_{x}和 ...
随机推荐
- PS1修改xshell命令行样式
linux 其他知识目录 在/root/.bashrc下加入如下代码. export PS1='\n\e[1;37m[\e[m\e[1;32m\u\e[m\e[1;33m@\e[m\e[1;35m\H ...
- Js 问题分析--js 影响页面性能
文档下载链接:http://pan.baidu.com/s/1i4Hci4d (失效请留言)
- 《构建之法》6-7章读后感、问题及对Scrum的理解
第6章读后感: 看完第六章后了解什么是敏捷流程.“敏捷流程”在软件工程的语境中是一系列价值观和方法论的集合.我觉得敏捷是比较人性化而且让人比较轻松的的一种团队做项目的方法吧,它会比较注重交流,而不是硬 ...
- mysql 多查询临时表的运用
SELECT * from (select count(*) imgCount1 from imagetable where SeriesID = '1201061992020630292018092 ...
- KNN算法之图像处理二
1.看了诸多博客,初步得到结论是:KNN不适合做图像分类. 2.如果偏要用此方法进行图像分类,距离计算为:对应的每个像素代表的像素值进行绝对差值计算,最后求和.这就是“图像的距离”
- Alpha 冲刺(10/10)
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 测试整体软件 展示GitHub当 ...
- 把a文件删除b文件中的相同的行
grep -vxFf b.txt a.txt > newa.txt 更好的方法是 comm - - b.txt a.txt > newa.txt 来自Tool in unix to sub ...
- 使用docker国内镜像解决方案
1:蜂巢镜像 https://c.163yun.com/hub#/m/library/ 例如: docker pull hub.c.163.com/library/nginx:1.8 再次执行dock ...
- MySQL 忘记root密码怎么办
前言:记住如果忘记root密码,在启动MySQL的时候,跳过查询授权表就ok了. 对于RedHat 6 而言 (1)启动mysqld 进程时,为其使用:--skip-grant-tables --sk ...
- python接口自动化测试框架实现之操作oracle数据库
python操作oracle数据库需要使用到cx-oracle库. 安装:pip install cx-oracle python连接oracle数据库分以下步骤: 1.与oracle建立连接: 2. ...