http://codeforces.com/contest/787/problem/C

题目大意:有一个长度为n的环,第1个位置是黑洞,其他都是星球。已知在星球上(不含第一个黑洞)有一位神。有两个人,每个人有一个集合的数字,两人进行游戏,每人每轮可以让神从一个星球向后移动x位(x为目前两个人所拥有的集合中的一个任意数字,数字可以重复选)。请求出神在2~n的每一个位置上时,两人分别先手的输赢情况,先手胜利输出WIN,先手必败输出LOOS,会无限循环输出LOOP。

思路:经典的有向图博弈(可惜我不会TAT)。

假定范围是[0,n-1],那么定义dp(i, j)表示是第i个人,在第j个位置先手的情况(三种情况,loop,lose,win)。然后我们知道了在dp[0][0] = dp[1][0] = lose是必败的,所以我们反向回去推即可。然后反向推是利用bfs进行的。

①因为对于某个点,如果是必败态,那么他之间的状态都是必胜的

②如果当前点是必胜态,那么他之前的状态中必然有一个点是必败的。那么也就是说,那么必败的点的出度必然为0。

为什么出度为0就是必败呢。因为对于目前的这个状态,他可以往前面转移,假定他有k种转移方法,那么他的出度就是k。那么,我们定义目前的状态是必胜态,那么他转移出去的必然都是必败态。所以,假如说那个是必胜态,那么我们就对k--。如果k是0了,那么表示转移出去的只有必胜态了,所以当前的状态只能是必败态

感觉理解起来还是简单的^0^,开心

//看看会不会爆int!数组会不会少了一维!
//取物问题一定要小心先手胜利的条件
#include <bits/stdc++.h>
using namespace std;
#pragma comment(linker,"/STACK:102400000,102400000")
#define LL long long
#define ALL(a) a.begin(), a.end()
#define pb push_back
#define mk make_pair
#define fi first
#define se second
#define haha printf("haha\n")
const int maxn = + ;
int dp[][maxn];
int cnt[][maxn];
vector<int> ve[];
int n, k; void solve(){
queue<pair<int ,int> > que;
memset(dp, -, sizeof(dp));
dp[][] = , dp[][] = ;///0为必败,1为必胜
que.push(mk(, )); que.push(mk(, ));
while (!que.empty()){
pair<int, int> p = que.front(); que.pop();
int x = p.fi, y = p.se;
if (dp[x][y] == ){
for (int i = ; i < ve[x ^ ].size(); i++){
int nx = x ^ , ny = (p.se + n - ve[x^][i]) % n;
if (dp[nx][ny] == -){
dp[nx][ny] = ; que.push(mk(nx, ny));
}
}
}
else if (dp[x][y] == ){
for (int i = ; i < ve[x ^ ].size(); i++){
int nx = x ^ , ny = (p.se + n - ve[x^][i]) % n;
cnt[nx][ny]--;
if (cnt[nx][ny] == && dp[nx][ny] == -){
dp[nx][ny] = ; que.push(mk(nx, ny));
}
}
}
}
for (int i = ; i < ; i++){
for (int j = ; j < n; j++){
if (dp[i][j] == -) printf("Loop ");
else if (dp[i][j] == ) printf("Lose ");
else printf("Win ");
}
cout << endl;
}
} int main(){
cin >> n >> k;
for (int i = ; i < n; i++) cnt[][i] = k;
while (k--){
int u; cin >> u;
ve[].pb(u);
}
cin >> k;
for (int i = ; i < n; i++) cnt[][i] = k;
while (k--){
int u; cin >> u;
ve[].pb(u);
}
solve();
return ;
}

有向图博弈+出度的结合 Codeforces Round #406 (Div. 2) C的更多相关文章

  1. 【动态规划】Codeforces Round #406 (Div. 2) C.Berzerk

    有向图博弈问题. 能转移到一个必败态的就是必胜态. 能转移到的全是必胜态的就是必败态. 转移的时候可以用队列维护. 可以看这个 http://www.cnblogs.com/quintessence/ ...

  2. Codeforces #Round 406(Div.2)

    来自FallDream的博客,未经允许,请勿转载,谢谢. ------------------------------------------------------- 大家好,我是一个假人.在学习O ...

  3. Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  4. Codeforces Round #406 (Div. 1) A. Berzerk 记忆化搜索

    A. Berzerk 题目连接: http://codeforces.com/contest/786/problem/A Description Rick and Morty are playing ...

  5. Codeforces Round #406 (Div. 2)滚粗记

    A 一看到题,不是一道解不定方程的裸题吗,调了好久exgcd. 其实一个for就好了啊 B 一直WA ON TEST 7真是烦,一想会不会是编号太大了,又写了一个map版本,无用. 调了好久好久才发现 ...

  6. 维护前面的position+主席树 Codeforces Round #406 (Div. 2) E

    http://codeforces.com/contest/787/problem/E 题目大意:给你n块,每个块都有一个颜色,定义一个k,表示在区间[l,r]中最多有k中不同的颜色.另k=1,2,3 ...

  7. 区间->点,点->区间,线段树优化建图+dijstra Codeforces Round #406 (Div. 2) D

    http://codeforces.com/contest/787/problem/D 题目大意:有n个点,三种有向边,这三种有向边一共加在一起有m个,然后起点是s,问,从s到所有点的最短路是多少? ...

  8. 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  9. Codeforces Round #406 (Div. 1)

    B题打错调了半天,C题想出来来不及打,还好没有挂题 AC:AB Rank:96 Rating:2125+66->2191 A.Berzerk 题目大意:有一个东东在长度为n的环上(环上点编号0~ ...

随机推荐

  1. 团队项目成员与题目(本地地铁查询app)

    团队名称:Daydreaming团队成员及其特点:张运涛:能快速与团队成员中的每一位进行合作,能全面考虑遇到的问题,善于总结积累.能较好的理解老师与其他人员的想法要求.刘瑞欣:做事果断,善于领导,有想 ...

  2. 继承&成员函数&覆盖

    //成员函数. /* 当子父类中出现成员函数一模一样的情况,会运行子类的函数. 这种现象,称为覆盖操作.这时函数在子父类中的特性. 函数两个特性: 1,重载.同一个类中.overload 2,覆盖.子 ...

  3. 一些有趣的erlang项目

    这里会收集一些erlang项目,有需可以转. erlang-bookmarks Scaling Erlang High Performance Erlang - Finding Bottlenecks ...

  4. Eureka服务注册过程

    上篇博客<SpringCloud--Eureka服务注册和发现>介绍了Eureka的基本功能,这篇我们来聊聊eureka是如何实现的. 上图是eureka的架构图,Eureka分为Serv ...

  5. json_decode遇到的编码问题

    初入csdn,就最近遇到的简单问题做一个功能解释; json_encode和json_decode只针对utf8字符有效,如果遇到其他编码比如gbk,需要进行转码然后解析: header(" ...

  6. PHP中与类和对象有关的几个系统函数

    与类有关的系统函数: class_exists(“类名”), 判断一个类是否存在(是否定义过) interface_exists(“接口名”), 判断一个接口是否存在(是否定义过) get_class ...

  7. 主流的RPC框架有哪些

    RPC是远程过程调用的简称,广泛应用在大规模分布式应用中,作用是有助于系统的垂直拆分,使系统更易拓展.Java中的RPC框架比较多,各有特色,广泛使用的有RMI.Hessian.Dubbo等.RPC还 ...

  8. Spring注解原理

    一.注解的基本概念和原理及其简单实用 注解(Annotation)提供了一种安全的类似注释的机制,为我们在代码中添加信息提供了一种形式化得方法,使我们可以在稍后某个时刻方便的使用这些数据(通过解析注解 ...

  9. IPv4编址及子网划分

    在讨论IP编址之前,我们需要讨论一下主机与路由器连入网络的方法.一台主机通常只有一条链路链接到网络:当主机中的IP想发送一个数据报时,它就在链路上发送,主机与物理链路之间的边界叫做接口(interfa ...

  10. 【Linux笔记】阿里云服务器被暴力破解

    一.关于暴力破解 前几天新购进了一台阿里云服务器,使用过程中时常会收到“主机被暴力破解”的警告,警告信息如下: 云盾用户您好!您的主机:... 正在被暴力破解,系统已自动启动破解保护.详情请登录htt ...