72.Edit Distance---dp
题目链接:https://leetcode.com/problems/edit-distance/description/
题目大意:找出两个字符串之间的编辑距离(每次变化都只消耗一步)。
法一(借鉴):经典dp。代码如下(耗时15ms):
//dp公式:dp[i][j]表示第一个字符串前i个字符到第二个字符串前j个字符的编辑距离长度
//当word1[i]==word2[j]时,dp[i][j]=dp[i-1][j-1]
//否则,dp[i][j]=min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])+1
public int minDistance(String word1, String word2) {
int len1 = word1.length(), len2 = word2.length();
int dp[][] = new int[len1+1][len2+1];
//初始化
for(int i = 0; i <= len1; i++) {
dp[i][0] = i;
}
for(int i = 0; i <= len2; i++) {
dp[0][i] = i;
}
for(int i = 1; i <= len1; i++) {//下标从1开始
for(int j = 1; j <= len2; j++) {
if(word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
int min = Integer.MAX_VALUE;
if(min > dp[i - 1][j - 1]) {
min = dp[i - 1][j - 1];
}
if(min > dp[i][j - 1]) {
min = dp[i][j - 1];
}
if(min > dp[i - 1][j]) {
min = dp[i - 1][j];
}
dp[i][j] = min + 1;
}
}
}
return dp[len1][len2];
}
dp数组变化(例子:abc到acde的编辑距离):
0 | 1("a") | 2("c") | 3("d") | 4("e") |
1("a") | 0(a->a) | 1(a->ac) | 2(a->acd) | 3(a->acde) |
2("b") | 1(ab->a) | 1(ab->ac) | 2(ab->acd) | 3(ab->acde) |
3("c") | 2(abc->a) | 1(abc->ac) | 2(abc->acd) | 3(abc->acde) |
从上表可清楚看见最后结果在dp[3][4]中。
dp数组填充顺序:从左上到右下,即每一次数值计算都要用到左边,上边,左上的数据。
72.Edit Distance---dp的更多相关文章
- 【Leetcode】72 Edit Distance
72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...
- 刷题72. Edit Distance
一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一 ...
- [LeetCode] 72. Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- 72. Edit Distance
题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to w ...
- [LeetCode] 72. Edit Distance(最短编辑距离)
传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...
- leetCode 72.Edit Distance (编辑距离) 解题思路和方法
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- 72. Edit Distance (String; DP)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- [leetcode DP]72. Edit Distance
计算最少用多少不把word1变为word2, 思路:建立一个dp表,行为word1的长度,宽为word2的长度 1.边界条件,dp[i][0] = i,dp[0][j]=j 2.最优子问题,考虑已经知 ...
- 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP
Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...
随机推荐
- HDU4822-Tri-War
题目 给出一颗树,\(m\)次询问树上不相同的三个点\(A,B,C\).我们称一个点\(x\)被\(A\)占领当且仅当\(dist(A,x)>dist(B,x),dist(A,x)>dis ...
- 最大流算法-ISAP
引入 最大流算法分为两类,一种是增广路算法,一种是预留推进算法.增广路算法包括时间复杂度\(O(nm^2)\)的EK算法,上界为\(O(n^2m)\)的Dinic算法,以及一些其他的算法.EK算法直接 ...
- BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)
第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...
- 英文报道:China challenged Australian warships in South China Sea, reports say
学习地道新闻英语表达,以下文章来自CNN By Ben Westcott and Jamie Tarabay, CNN Updated 0830 GMT (1630 HKT) April 20, 20 ...
- 转载--------Python中:self和__init__的含义 + 为何要有self和__init__
背景 回复:我写的一些Python教程,需要的可以看看,中SongShouJiong的提问: Python中的self,__init__的含义是啥?为何要有self,__init这些东西? 解释之前, ...
- redis2.4.conf配置文件中文释意
# Redis示例配置文件 # 注意单位问题:当需要设置内存大小的时候,可以使用类似1k.5GB.4M这样的常见格式: # # 1k => 1000 bytes # 1kb => 1024 ...
- Asp.Net保存session的三种方法 (Dll文件更新导致session丢失的解决办法)
1. InProc模式(默认值):asp.net将session保存到当前进程中,这种方式最快,但是不能多台服务器共享session,且会话状态数据容易丢失. <sessionState mod ...
- Swagger2 添加HTTP head参数,解决用户是token信息保留
转:http://blog.csdn.net/u014044812/article/details/71473226 大家使用swagger往往会和JWT一起使用,而一般使用jwt会将token放在h ...
- Java常量池详解之Integer缓存
一个Java question,求输出结果 public class IntegerTest { public static void main(String[] args) { objPoolT ...
- windows中apache+tomcat整合,使php和java项目能够独立运行
一.下载和安装 1.安装php 网上有安装教程,不再赘述 2.安装apache 比如安装目录为e:\apache; 项目根目录为e:\www; 网上有安装教程,不再赘述 3.安装jdk 不再 ...