72.Edit Distance---dp
题目链接:https://leetcode.com/problems/edit-distance/description/
题目大意:找出两个字符串之间的编辑距离(每次变化都只消耗一步)。
法一(借鉴):经典dp。代码如下(耗时15ms):
//dp公式:dp[i][j]表示第一个字符串前i个字符到第二个字符串前j个字符的编辑距离长度
//当word1[i]==word2[j]时,dp[i][j]=dp[i-1][j-1]
//否则,dp[i][j]=min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])+1
public int minDistance(String word1, String word2) {
int len1 = word1.length(), len2 = word2.length();
int dp[][] = new int[len1+1][len2+1];
//初始化
for(int i = 0; i <= len1; i++) {
dp[i][0] = i;
}
for(int i = 0; i <= len2; i++) {
dp[0][i] = i;
}
for(int i = 1; i <= len1; i++) {//下标从1开始
for(int j = 1; j <= len2; j++) {
if(word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
int min = Integer.MAX_VALUE;
if(min > dp[i - 1][j - 1]) {
min = dp[i - 1][j - 1];
}
if(min > dp[i][j - 1]) {
min = dp[i][j - 1];
}
if(min > dp[i - 1][j]) {
min = dp[i - 1][j];
}
dp[i][j] = min + 1;
}
}
}
return dp[len1][len2];
}
dp数组变化(例子:abc到acde的编辑距离):
0 | 1("a") | 2("c") | 3("d") | 4("e") |
1("a") | 0(a->a) | 1(a->ac) | 2(a->acd) | 3(a->acde) |
2("b") | 1(ab->a) | 1(ab->ac) | 2(ab->acd) | 3(ab->acde) |
3("c") | 2(abc->a) | 1(abc->ac) | 2(abc->acd) | 3(abc->acde) |
从上表可清楚看见最后结果在dp[3][4]中。
dp数组填充顺序:从左上到右下,即每一次数值计算都要用到左边,上边,左上的数据。
72.Edit Distance---dp的更多相关文章
- 【Leetcode】72 Edit Distance
72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...
- 刷题72. Edit Distance
一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一 ...
- [LeetCode] 72. Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- 72. Edit Distance
题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to w ...
- [LeetCode] 72. Edit Distance(最短编辑距离)
传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...
- leetCode 72.Edit Distance (编辑距离) 解题思路和方法
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- 72. Edit Distance (String; DP)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- [leetcode DP]72. Edit Distance
计算最少用多少不把word1变为word2, 思路:建立一个dp表,行为word1的长度,宽为word2的长度 1.边界条件,dp[i][0] = i,dp[0][j]=j 2.最优子问题,考虑已经知 ...
- 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP
Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...
随机推荐
- bzoj1061-[Noi2008]志愿者招募-单纯形 & 费用流
有\(n\)天,\(m\)类志愿者,一个第\(i\)类志愿者可以从第\(s_i\)天工作到第\(t_i\)天,第\(i\)天工作的志愿者不少于\(b_i\)个.每一类志愿者都有单价\(c_i\),问满 ...
- 【bzoj4425】[Nwerc2015]Assigning Workstations分配工作站 贪心+堆
题目描述 佩内洛普是新建立的超级计算机的管理员中的一员. 她的工作是分配工作站给到这里来运行他们的计算研究任务的研究人员. 佩内洛普非常懒惰,不喜欢为到达的研究者们解锁机器. 她可以从在她的办公桌远程 ...
- Java NIO中的Buffer
简介 Buffer缓冲区,首先要弄明白的是,缓冲区是怎样一个概念.它其实是缓存的一种,我们常说的缓存,包括保存在硬盘上的浏览器缓存,保存在内存中的缓存(比如Redis.memcached).Buffe ...
- C++解析(25):关于动态内存分配、虚函数和继承中强制类型转换的疑问
0.目录 1.动态内存分配 1.1 new和malloc的区别 1.2 delete和free的区别 2.虚函数 2.1 构造函数与析构函数是否可以成为虚函数? 2.2 构造函数与析构函数是否可以发生 ...
- Android Native jni 编程 Android.mk 文件编写
LOCAL_PATH 必须位于Android.mk文件的最开始.它是用来定位源文件的位置,$(call my-dir)的作用就是返回当前目录的路径. LOCAL_PATH := $(call my-d ...
- MySQL中文全文检索demoSQL
一.概述 MySQL全文检索是利用查询关键字和查询列内容之间的相关度进行检索,可以利用全文索引来提高匹配的速度. 二.语法 MATCH (col1,col2,...) AGAINS ...
- 【hash】【P5079】P5079 Tweetuzki 爱伊图
Description Input 第一行两个正整数 \(r~,~c\),表示矩阵的行数和列数. 接下来 \(r\) 行,每行输入 \(c\) 个字符,用空格隔开,保证只含有 . 和 # 两种字符.输 ...
- css样式表设置
有参考此片博文 1.内联式样式表 是指将CSS样式编码写在HTML标签中,在标签内编写的样式能影响的范围最小,只改变本标签的文字样式,同样的标签不会受到影响,也称行间样式表. 格式如下 <h1 ...
- selenium - webdriver - 定位一组元素
八种方法: find_elements_by_id() find_elements_by_name() find_elements_by_class_name() find_elements_by_t ...
- jvm容器的关系
jvm实例,tomcat容器,spring容器,在内存中的关系5 1.一个java项目对应一个jvm 吗? 2.tomcat里面加载多个java项目 ,是不是用了一个jvm? 3.java项目中的sp ...