多边形凸包。。

。。

Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu

Submit Status

Description

Problem B

Board Wrapping

Input: standard input

Output: standard output

Time Limit: 2 seconds

The small sawmill in Mission, British Columbia, has developed a brand new way of packaging boards for drying. By fixating the boards in special moulds, the board can dry efficiently in a drying room.

Space is an issue though. The boards cannot be too close, because then the drying will be too slow. On the other hand, one wants to use the drying room efficiently.

Looking at it from a 2-D perspective, your task is to calculate the fraction between the space occupied by the boards to the total space occupied by the mould. Now, the mould is surrounded by an aluminium frame of negligible thickness, following
the hull of the boards' corners tightly. The space occupied by the mould would thus be the interior of the frame.

Input

On the first line of input there is one integer, N <= 50, giving the number of test cases (moulds) in the input. After this line, N test cases follow. Each test case starts with a line containing one integer n1<
n <= 600
, which is the number of boards in the mould. Then n lines follow, each with five floating point numbers x, y, w, h, j where 0 <= x, y, w, h <=10000 and –90° < j <=90°. The x and y are
the coordinates of the center of the board and w and h are the width and height of the board, respectively. j is the angle between the height axis of the board to the y-axis in degrees, positive
clockwise. That is, if j = 0, the projection of the board on the x-axis would be w. Of course, the boards cannot intersect.

Output

For every test case, output one line containing the fraction of the space occupied by the boards to the total space in percent. Your output should have one decimal digit and be followed by a space and a percent sign (%).

Sample Input                              Output for Sample Input

1

4

4 7.5 6 3 0

8 11.5 6 3 0

9.5 6 6 3 90

4.5 3 4.4721 2.2361 26.565

64.3 %


Swedish National Contest

The Sample Input and Sample Output corresponds to the givenpicture

Source

Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: (Computational) Geometry :: Polygon :: Standard

Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Algorithms in 2D :: Examples



Root :: Competitive Programming 2: This increases the lower bound of Programming Contests. Again (Steven & Felix Halim) :: (Computational) Geometry :: Polygon
- Standard

Submit Status

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector> using namespace std; const double eps=1e-6; int dcmp(double x) { if(fabs(x)<eps) return 0; return (x<0)?-1:1;} struct Point
{
double x,y;
Point(){}
Point(double _x,double _y):x(_x),y(_y){};
}; Point operator+(Point A,Point B) { return Point(A.x+B.x,A.y+B.y);}
Point operator-(Point A,Point B) { return Point(A.x-B.x,A.y-B.y);}
Point operator*(Point A,double p) { return Point(A.x*p,A.y*p);}
Point operator/(Point A,double p) { return Point(A.x/p,A.y/p);} bool operator<(const Point& A,const Point& B) {return dcmp(A.x-B.x)<0||(dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)<0);}
bool operator==(const Point& a,const Point& b) {return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;} double Angle(Point v){return atan2(v.y,v.x);}
Point Rotate(Point A,double rad) {return Point(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));}
double torad(double deg) {return deg/180.*acos(-1.);}
double Cross(Point A,Point B){return A.x*B.y-A.y*B.x;} int n;
double area0,area1;
vector<Point> vp,ch; // 点集凸包
// 假设不希望在凸包的边上有输入点,把两个 <= 改成 <
// 注意:输入点集会被改动
vector<Point> CovexHull(vector<Point>& p)
{
sort(p.begin(),p.end());
p.erase(unique(p.begin(),p.end()),p.end());
int n=p.size();
int m=0;
vector<Point> ch(n+1);
for(int i=0;i<n;i++)
{
while(m>1&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
int k=m;
for(int i=n-2;i>=0;i--)
{
while(m>k&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
if(n>1) m--;
ch.resize(m);
return ch;
} double PolygonArea(vector<Point>& p)
{
int n=p.size();
double area=0;
for(int i=1;i<n-1;i++)
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2.;
} int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d",&n);
area0=area1=0.0;
vp.clear();
double x,y,w,h,j;
for(int i=0;i<n;i++)
{
scanf("%lf%lf%lf%lf%lf",&x,&y,&w,&h,&j);
area0+=w*h;
double rad=torad(j);
Point o(x,y);
vp.push_back(o+Rotate(Point(w/2,h/2),-rad));
vp.push_back(o+Rotate(Point(-w/2,h/2),-rad));
vp.push_back(o+Rotate(Point(w/2,-h/2),-rad));
vp.push_back(o+Rotate(Point(-w/2,-h/2),-rad));
}
ch=CovexHull(vp);
area1=PolygonArea(ch);
printf("%.1lf %%\n",100.*area0/area1);
}
return 0;
}

UVA 10652 Board Wrapping 计算几何的更多相关文章

  1. Uva 10652 Board Wrapping(计算几何之凸包+点旋转)

    题目大意:给出平面上许多矩形的中心点和倾斜角度,计算这些矩形面积占这个矩形点形成的最大凸包的面积比. 算法:GRAHAM,ANDREW. 题目非常的简单,就是裸的凸包 + 点旋转.这题自己不会的地方就 ...

  2. uva 10652 Board Wrapping (计算几何-凸包)

    Problem B Board Wrapping Input: standard input Output: standard output Time Limit: 2 seconds The sma ...

  3. UVA 10652 Board Wrapping(凸包)

    The small sawmill in Mission, British Columbia, hasdeveloped a brand new way of packaging boards for ...

  4. ●UVA 10652 Board Wrapping

    题链: https://vjudge.net/problem/UVA-10652 题解: 计算几何,Andrew求凸包, 裸题...(数组开小了,还整了半天...) 代码: #include<c ...

  5. 简单几何(向量旋转+凸包+多边形面积) UVA 10652 Board Wrapping

    题目传送门 题意:告诉若干个矩形的信息,问他们在凸多边形中所占的面积比例 分析:训练指南P272,矩形面积长*宽,只要计算出所有的点,用凸包后再求多边形面积.已知矩形的中心,向量在原点参考点再旋转,角 ...

  6. uva 10652 Board Wrapping

    主要是凸包的应用: #include <cstdio> #include <cmath> #include <cstring> #include <algor ...

  7. UVA 10652 Board Wrapping(凸包)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32286 [思路] 凸包 根据角度与中心点求出长方形所有点来,然后就 ...

  8. UVA 10652 Board Wrapping(二维凸包)

    传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...

  9. uva 10625 Board Wrapping

    https://vjudge.net/problem/UVA-10652 给出n个长方形,用一个面积尽量小的凸多边形把他们围起来 求木板占包装面积的百分比 输入给出长方形的中心坐标,长,宽,以及长方形 ...

随机推荐

  1. YanghuiTriangle

    Demand 1 用实现循环队列 2 参考PPT用循环队列打印杨辉三角 3 用JDB或IDEA单步跟踪排队情况,画出队列变化图,包含自己的学号信息 4 把代码推送到代码托管平台 5 把完成过程写一篇博 ...

  2. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

  3. 判断一个js对象是不是数组

    //今天突然想到一个问题,如何判断一个对象是不是数组 var arr = [0, 1, 2]; console.log(arr) //object, 显然不行 //查阅了很多资料,发现几个挺不错的方法 ...

  4. python开发_tempfile

    python中的tempfile模块,是为创建临时文件(夹)所提供的 如果你的应用程序需要一个临时文件来存储数据,但不需要同其他程序共享,那么tempfile模块来创建临时文件(夹)是个不错的选择 其 ...

  5. [转]android中drawable资源的解释及例子

    原文链接:         http://blog.csdn.net/wode_dream/article/details/38584693 文章中的内容参考Dev Guide中的Drawable R ...

  6. Codeforces Beta Round #4 (Div. 2 Only) D. Mysterious Present 记忆化搜索

    D. Mysterious Present 题目连接: http://www.codeforces.com/contest/4/problem/D Description Peter decided ...

  7. HDU 5297 Y sequence 容斥 迭代

    Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...

  8. HDU 4579 Random Walk (解方程组)

    Random Walk Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)Total ...

  9. Spring JavaConfig @Import实例

    一般来说, 需要按模块或类别 分割Spring XML bean文件 成多个小文件, 使事情更容易维护和模块化. 例如, <beans xmlns="http://www.spring ...

  10. windows及linux下安装django simple captcha 遇到的各种问题及解决的方法

    转载自http://www.cnblogs.com/descusr/p/3225874.html 全部程序写完之后,验证码图片不显示,点击图片地址会提演示样例如以下错误,而且在linux下的纠正办法 ...