原理:使用GT人脸库做样本,VS2010下使用openCV2.44自带的Haar算法检測人脸区域,ASM Library特征检測,然后使用YCrCb颜色空间做肤色检測,再用LBP+Gabor小波提取特征,最小邻近距离做分类识别。

1、GT人脸库

Georgia Tech face database,网址:http://www.anefian.com/research/face_reco.htm

GT人脸库包括50个人,每人15张不同角度、不同表情的正面照片。

图片为JPG格式,640*480,大小在159~192KB之间。Zip压缩下总大小130M。

特点是数据量比較多,每一个人的图像信息丰富多变,相对也比較其它库难以识别。

2、openCV人脸区域检測

	pFaces = cvHaarDetectObjects(
pic8, g_FDcascade, g_FDstorage,
1.1,
3,
0 |
//CV_HAAR_DO_CANNY_PRUNING |
//CV_HAAR_FIND_BIGGEST_OBJECT |
CV_HAAR_DO_ROUGH_SEARCH |
CV_HAAR_SCALE_IMAGE |
0,
cvSize(20, 20));

下面几个图片在CV_HAAR_DO_CANNY_PRUNING | CV_HAAR_FIND_BIGGEST_OBJECT(识别最大的人脸区域)下识别不出来:

s05_07.jpg // 能够在CV_HAAR_DO_ROUGH_SEARCH | CV_HAAR_SCALE_IMAGE(识别全部的人脸区域)下识别,见下图

s24_03.jpg // 无法识别

s32_06.jpg // 无法识别

s32_14.jpg // 识别错误

s43_14.jpg // 识别错误

可见openCV的检測率还是非常高的(745/750 = 99.33%)。

s05_07.jpg 

s01_01.jpg

3、ASMLibrary特征检測

ASM Library是国人的作品,https://code.google.com/p/asmlibrary/

	#define FDFN	"haarcascade_frontalface_alt2.xml"
#define ASMFN "AsmModel.amf" g_AsmFit.Read(ASMFN));
g_FDcascade = (CvHaarClassifierCascade*)cvLoad(FDFN, 0, 0, 0);
	g_detshape[0].x = float(g_faceRc.x);
g_detshape[0].y = float(g_faceRc.y);
g_detshape[1].x = float(g_faceRc.x+g_faceRc.width);
g_detshape[1].y = float(g_faceRc.y+g_faceRc.height);
InitShapeFromDetBox(g_shape, g_detshape,
g_AsmFit.GetMappingDetShape(), g_AsmFit.GetMeanFaceWidth());
g_AsmFit.Fitting(g_shape, picCopy); // fit ASM model

识别以后,提取人脸区域。

4、YCrCb颜色空间做肤色检測

		for (int w=0; w<src->width; w++)
{
if (pycrcb[Cr]>=133&&pycrcb[Cr]<=173&&pycrcb[Cb]>=77&&pycrcb[Cb]<=127)
{
SkinCount++;
}
pycrcb+=3;
psrc+=3;
}

依照肤色推断公式检查区域内的肤色像素,依照阈值为0.2推断是否为人脸区域,

再进一步规范化并获取人脸特征。

 s05_07提取的人脸特征灰度图
   s01_01提取的人脸特征灰度图

5、LBP+Gabor小波

LBP见:http://baike.baidu.com/view/1099358.htm?fr=aladdin

Gabor见:http://en.wikipedia.org/wiki/Gabor_filter

Complex

Real

Imaginary

where

and

简单的说就是使用Gabor变换在0~4五个尺度,0~8八个邻域方向对前面提取的人脸灰度图做卷积运算。然后提取灰度直方图作为特征。

					tmpV0 = tmpV * exp(-tmpV * (x*x + y*y) / 2.0);
tmpV1 = k*cos(phi)*x + k*sin(phi)*y;
cvmSet( re, y+kernelRadius, x+kernelRadius, tmpV0 * cos(tmpV1) );
cvmSet( im, y+kernelRadius, x+kernelRadius, tmpV0 * sin(tmpV1) ); /* G{scale_idx,angle_idx} = k^2/sigma^2 * exp(-k^2*(X.^2+Y.^2)/2/sigma^2)...
.*(exp(1i*(k*cos(phi)*X+k*sin(phi)*Y) - DC)); */

6、最小邻近距离

最后使用最小邻近距离,推断 待检測图片与样本的距离,最小的即为匹配的样本。

7、几点总结

1、速度:训练大概是0.16s一幅,识别大概是0.35s一幅。速度有点慢。

2、识别率:一组測试採用5个人每人5个图片作为样本,測试每一个人另外5张照片。

比如s01-s05,使用每人前5张照片(共25张)训练,中间或最后5张照片(共25张)作为待识别图片,识别率均为92%(23张)。

openCV+ASM+LBP+Gabor实现人脸识别(GT人脸库)的更多相关文章

  1. java 虹软ArcFace 2.0,java SDK使用、人脸识别-抽取人脸特征并做比对

    java人脸识别 虹软ArcFace 2.0,java SDK使用.人脸识别-抽取人脸特征并做比对 虹软产品地址:http://ai.arcsoft.com.cn/product/arcface.ht ...

  2. 基于node.js人脸识别之人脸对比

    基于node.js人脸识别之人脸对比 Node.js简介 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境. Node.js 使用了一个事件驱动.非阻塞式 I/O ...

  3. 使用python3.7和opencv4.1来实现人脸识别和人脸特征比对以及模型训练

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_126 OpenCV4.1已经发布将近一年了,其人脸识别速度和性能有了一定的提高,这里我们使用opencv来做一个实时活体面部识别的 ...

  4. 人脸识别-关于face_recognition库的安装

    首先十分感谢博客https://blog.csdn.net/scc_722/article/details/80613933,经历过很多尝试(快要醉了),终于看了这篇博客后安装成功. face_rec ...

  5. 干货 | AI人脸识别之人脸搜索

    本文档将利用京东云AI SDK来实践人脸识别中的人脸搜索功能,主要涉及到分组创建/删除.分组列表获取.人脸创建/删除.人脸搜索,本次实操的最终效果是:创建一个人脸库,拿一张图片在人脸库中搜索出相似度最 ...

  6. 百度云人脸识别API人脸对比

    from urllib import request import base64 import requests import re import json import urllib import ...

  7. 百度云人脸识别API人脸库管理

      from urllib import request import base64 import requests import re import json import urllib impor ...

  8. face-api.js 前端人脸识别,人脸检测,登录认证

    1.参考face-api.js https://github.com/justadudewhohacks/face-api.js#face-api.js-for-the-browser

  9. Opencv摄像头实时人脸识别

    Introduction 网上存在很多人脸识别的文章,这篇文章是我的一个作业,重在通过摄像头实时采集人脸信息,进行人脸检测和人脸识别,并将识别结果显示在左上角. 利用 OpenCV 实现一个实时的人脸 ...

随机推荐

  1. HDU 6194 string string string 2017沈阳网络赛 后缀数组

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6194 题意:告诉你一个字符串和k , 求这个字符串中有多少不同的子串恰好出现了k 次. 解法:后缀数组 ...

  2. yum和head一起用,报错“由于管道被破坏而退出”

    当要打印 [yum list ]时, 加上了管道符 以及 head 会出现报错 “由于管道被破坏而退出” 是因为 yum 与 head 连用 存在bug ,如果使用tail 则没有出现 具体什么bug ...

  3. zookeeper客户端连接报错

    [root@zoo1 zookeeper-3.4.10]# bin/zkCli.sh -server 172.16.1.10:2181 2017-10-27 00:37:59,326 [myid:] ...

  4. Linux Supervisor的安装与使用入门---SuSE

    Linux Supervisor的安装与使用入门 在linux或者unix操作系统中,守护进程(Daemon)是一种运行在后台的特殊进程,它独立于控制终端并且周期性的执行某种任务或等待处理某些发生的事 ...

  5. 前端代码编辑器ace 语法验证

    本文主要是介绍实际项目中如何加入语法检测功能.官方文档链接https://github.com/ajaxorg/ace/wiki/Syntax-validation 代码编辑器ace,使用webwor ...

  6. 使用注解配置SQL映射器

    在上一章,我们看到了我们是怎样在映射器Mapper XML配置文件中配置映射语句的.MyBatis也支持使用注解来配置映射语句.当我们使用基于注解的映射器接口时,我们不再需要在XML配置文件中配置了. ...

  7. cordova 整合 webpack vue

    cordova 是hybrid开发app的一个框架,通过js桥接原生api实现了js调用原生的一些功能:本打算学习下阿里的weex:可是一直打包不了,加上之前也用过cordova,打算使用cordov ...

  8. ubuntu调错

    最近运行一个程序,出现错误 ’event.h‘,猜想是缺少event lib 库 于是安装sudo apt-get install libevent-dev 即可.

  9. ES6-Set 和 Map 数据结构

    ES6 提供了新的数据结构 Set.它类似于数组,但是成员的值都是唯一的,没有重复的值. Set 本身是一个构造函数,用来生成 Set 数据结构. const s = new Set(); [2, 3 ...

  10. 哈尔滨理工大学第七届程序设计竞赛初赛(高年级组)I - B-旅行

    题目描述 小z放假了,准备到RRR城市旅行,其中这个城市有N个旅游景点.小z时间有限,只能在三个旅行景点进行游玩.小明租了辆车,司机很善良,说咱不计路程,只要你一次性缴费足够,我就带你走遍RRR城. ...