BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap
Description
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
Input
第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。(1<=d<=a,b<=50000)
Output
对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。
Sample Input
2
4 5 2
6 4 3
Sample Output
3
2
//对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(6,3),(3,3)。
#include<bits/stdc++.h>
using namespace std;
#define N 500010
int T,a,b,d,tot=0;
bool mark[N]={0};
int pri[N],mu[N],F[N]={0};
void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&pri[j]*i<N;j++){
mark[i*pri[j]]=1;
if(i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}else mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)F[i]=F[i-1]+mu[i];
}
int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&a,&b,&d);
a/=d;b/=d;
int ans=0,up=min(a,b);
for(int i=1,j;i<=up;i=j+1){
j=min(a/(a/i),b/(b/i));
ans+=(F[j]-F[i-1])*(a/i)*(b/i);
}
printf("%d\n",ans);
}
return 0;
}
BZOJ1101 POI2007 Zap 【莫比乌斯反演】的更多相关文章
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- 1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...
- 【BZOJ1101】Zap [莫比乌斯反演]
Zap Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Description 对于给定的整数a,b和d,有多少正整 ...
- BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...
- 【题解】Zap(莫比乌斯反演)
[题解]Zap(莫比乌斯反演) 裸题... 直接化吧 [P3455 POI2007]ZAP-Queries 所有除法默认向下取整 \[ \Sigma_{i=1}^x\Sigma_{j=1}^y[(i, ...
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
- 【莫比乌斯反演】BZOJ1101 [POI2007]zap
Description 回答T组询问,有多少组gcd(x,y)=d,x<=a, y<=b.T, a, b<=4e5. Solution 显然对于gcd=d的,应该把a/d b/d,然 ...
- P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
题目 P3455 [POI2007]ZAP-Queries 解析 莫比乌斯反演. 给定\(n\),\(m\),\(d\),求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j ...
随机推荐
- Vue 备
<div id="app"> <span :class='{red:addClass}'>jam</span> </div> < ...
- 简单易用的分页类实例代码PHP
<?php /*********************************************** * @类名: page * @参数: $myde_total - 总记录数 * $m ...
- i++为什么是线程不安全的
主要是因为i++这个操作不是原子性的,它会编译成 i = i +1: 其实是做了3个步骤,一个是读取,修改,写入 .所以会出现多线程访问冲突问题. 可以结合Java内存模型来进行说明.
- 关于Spring中applicationContext.xml配置错误“org/springframework/transaction/interceptor/TransactionInterceptor”的问题解决
问题描述: 在配置spring的applicationContext.xml中的默认事务管理器的时候可能会出现这样的错误: Error occured processing XML 'org/spri ...
- tensorflow wide deep 介绍
https://blog.csdn.net/heyc861221/article/details/80131369 https://blog.csdn.net/heyc861221/article/d ...
- 数据库建表char(10)和VARCHAR(10)
1.CHAR的长度是固定的,而VARCHAR2的长度是可以变化的, 比如,存储字符串“abc",对于CHAR (10),表示你存储的字符将占10个字节(包括7个空字符),而同样的VARCHA ...
- 在.net中运用HTMLParser解析网页的原理和方法
本文介绍了.net 版的一个HTMLParser网页解析开源类库(Winista.HTMLParser)的功能特性.工作原理和使用方法.对于使用.net进行Web信息提取的开发人员进行了一次HTMLP ...
- clipboard.js使用方法
HTML data-clipboard-action=“ copy ” 或者“cut” data-clipboard-target="#domName" data-clipboa ...
- 中国剩余定理——nyoj
中国剩余定理------解法如下:假设存在一个数M M%A=a , M%B=b , M%C=c并且A,B,C必须俩俩互质.满足这一条件下:存在一个R1使得 , K1=A*B*R1 ,K1%C==1.存 ...
- ping函数
#!/bin/bash #note:ping monitor set -u #set -x ping_fun() { d_network= echo -n "input the networ ...