题目描述

for i=1 to n

for j=1 to n

  1. sum+=gcd(i,j)

给出n求sum. gcd(x,y)表示x,y的最大公约数.

输入输出格式

输入格式:

n

输出格式:

sum

输入输出样例

输入样例#1:

  1. 2
输出样例#1:

  1. 5

说明

数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000

分析:求sum我们不可能把所有gcd全部求出来,但是有很多一样的gcd,因此我们可以统计每个gcd的个数,如gcd=k的倍数的个数为(n/k)*(n/k),这样我们把k的倍数减掉就好了,因此我们要倒着枚举k.

  1. #include <cstdio>
  2. #include <cstring>
  3. #include <iostream>
  4. #include <algorithm>
  5.  
  6. using namespace std;
  7.  
  8. long long n,sum,d[];
  9.  
  10. int main()
  11. {
  12. scanf("%lld", &n);
  13. for (int k = n; k; k--)
  14. {
  15. d[k] = (n / k) * (n / k);
  16. for (int i = k + k; i <= n; i += k)
  17. d[k] -= d[i];
  18. sum += d[k] * k;
  19. }
  20. printf("%lld\n", sum);
  21.  
  22. return ;
  23. }

洛谷P2398 GCD SUM的更多相关文章

  1. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  2. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  3. 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568

    https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...

  4. 洛谷 P2398 GCD SUM 题解

    题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...

  5. P2398 GCD SUM

    P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...

  6. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  7. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  8. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  9. 【洛谷P2398】GCD SUM

    题目大意:求 \[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)\] 题解: 最重要的一步变换在于. \[\sum\limits_{k=1}^n k \s ...

随机推荐

  1. MySQL高性能优化实战总结

    1.1 前言 MySQL对于很多Linux从业者而言,是一个非常棘手的问题,多数情况都是因为对数据库出现问题的情况和处理思路不清晰.在进行MySQL的优化之前必须要了解的就是MySQL的查询过程,很多 ...

  2. 数据库mysql的常规操作

    1. 什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的建立在计算机存储设备上的仓库. 简单来说是本身可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进 ...

  3. 深入react技术栈解读

    1. react实现virtual DOM ,如果要改变页面的内容,还是需要执行DOM操作,比原生操作DOM多了virtualDOM的操作(计算,对比等), 应该是更耗性能??? 2. react特点 ...

  4. 详讲H5、WebApp项目中常见的坑以及注意事项

    首先我们中会有一些常用的meta标签,如下: <!--防止手机中网页放大和缩小--> <meta name="viewport" content="wi ...

  5. 《linux内核分析》 第一周

    20135130  王川东 计算机是如何工作的? 计算机的基本原理是存储程序和程序控制.预先要把指挥计算机如何进行操作的指令序列(称为程序)和原始数据通过输入设备输送到计算机内存贮器中.每一条指令中明 ...

  6. Python:字符串中引用外部变量的3种方法

    方法一: username=input('username:') age=input('age:') job=input('job:') salary=input('salary') info1='' ...

  7. Beta版冲刺前准备

    [团队概要] 团队项目名:小葵日记 团队名:日不落战队 队员及角色: 队员 角色 备注 安琪 前端工程师 队长 佳莹 前端工程师 智慧 后端工程师 章鹏 后端工程师 语恳 UI设计师 炜坤 前端工程师 ...

  8. 读 《我是一只IT小小鸟》 有感

    在没有上大学之前,我很迷茫自己将来要从事什么行业.有人说,人生的每一个阶段都应该有自己的目标,然而,我上大学之前,甚至大一下学期之前,我对于我今后的从业道路,人生规划,都是迷茫的.高考结束成绩出来后, ...

  9. 《我是一只IT小小鸟》 读书笔记

    <我是一只IT小小鸟>讲述了IT人员的成长经历,邀请了许多名IT行业的职员,学生,研究生写了自己的亲身经历和人生感悟,以书中可以看到我国IT行业的快速进步,以及看到IT员在这条道路上的坎坷 ...

  10. js实现轮播功能

    先上图,效果大概就是这样子: 实现的功能: 1.鼠标经过第几个正方形,就要展示第几张图片,并且正方形的颜色也发生变化 2.图片自动轮播,(这需要一个定时器) 3.鼠标经过图片,图片停止自动播放(这需要 ...