洛谷P2398 GCD SUM
题目描述
for i=1 to n
for j=1 to n
sum+=gcd(i,j)
给出n求sum. gcd(x,y)表示x,y的最大公约数.
输入输出格式
输入格式:
n
输出格式:
sum
输入输出样例
2
5
说明
数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000
分析:求sum我们不可能把所有gcd全部求出来,但是有很多一样的gcd,因此我们可以统计每个gcd的个数,如gcd=k的倍数的个数为(n/k)*(n/k),这样我们把k的倍数减掉就好了,因此我们要倒着枚举k.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; long long n,sum,d[]; int main()
{
scanf("%lld", &n);
for (int k = n; k; k--)
{
d[k] = (n / k) * (n / k);
for (int i = k + k; i <= n; i += k)
d[k] -= d[i];
sum += d[k] * k;
}
printf("%lld\n", sum); return ;
}
洛谷P2398 GCD SUM的更多相关文章
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- 洛谷P2398 GCD SUM [数论,欧拉筛]
题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...
- 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568
https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...
- 洛谷 P2398 GCD SUM 题解
题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...
- P2398 GCD SUM
P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...
- 洛谷P2568 GCD(线性筛法)
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...
- 洛谷 P1890 gcd区间
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- 【洛谷P2398】GCD SUM
题目大意:求 \[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)\] 题解: 最重要的一步变换在于. \[\sum\limits_{k=1}^n k \s ...
随机推荐
- 445. Cosine Similarity【LintCode java】
Description Cosine similarity is a measure of similarity between two vectors of an inner product spa ...
- 做程序开发的你如果经常用Redis,这些问题肯定会遇到
分布式缓存Redis是一种支持Key-Value等多种数据结构的存储系统.可用于缓存.事件发布或订阅.高速队列等多种场景.Redis使用ANSI C语言编写,提供字符串(String).哈希(Hash ...
- 【python 3.6】python获取当前时间及过去或将来的指定时间
最近有个查询api,入参需要一个startTime,一个endTime,刚好用到datetime. 留此记录. #python 3.6 #!/usr/bin/env python # -*- codi ...
- 在Windows2008下添加iscsi存储出现磁盘Offine(The disk is offine because of policy set by an adminstrator)的解决方法
打开CMD命令行输入如下命令: DISKPART.EXE DISKPART> san SAN Policy : Offline Shared DISKPART> san policy=On ...
- Python基础灬函数补充(作用域,迭代器,生成器)
变量作用域 函数里面操作外部变量时,作用域仅限于函数里面. var1 = 123 def func(): var1 = 456 print("函数里:", var1) func() ...
- Tensorflow框架之AlexNet
from datetime import datetime import math import time import tensorflow as tf batch_size=32 num_batc ...
- Scrum立会报告+燃尽图(十月二十三日总第十四次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...
- postion一句话很管用
relative和absolute有本质区别,relative是相对与postion为默认值的时候元素自身位置来定位:而absolute是相对最近position为relative或absolute的 ...
- Requests库与HTTP协议
了解HTTP协议 请求与响应模式的协议: 用户提出对URL(用来定位网络中的资源位置)地址数据的操作请求,服务器给予相应. 无状态的应用层协议:两次请求之间不会互相影响. HTTP协议支持的请求种类: ...
- lintcode-445-余弦相似度
445-余弦相似度 Cosine similarity is a measure of similarity between two vectors of an inner product space ...