algorithmn

算法的解释

Dijkstra

其实就是A star或者Dijkstra(基于priority queue实现的)的路径规划算法,关键是相邻点之间的cost怎么计算,怎么从可行点找到path

Navfn's optimal path is based on a path's "potential"(可能可以行走的目标). The potential is the relative cost of a

path based on the distance from the goal and from the existing path itself.(怎么计算两个点之间的距离cost) It must be noted that Navfn update's each cell's potential in the potential map, or potarr(定义的potential array变量) as it's called in navfn, as it checks that cell. This way,it can step back through the potential array to find the best possible path. The potential is determined by the cost of traversing a cell (traversability factor, hf)

and the distance away that the next cell is from the previous cell.

parameter

navfn 参数

global planner

上面两个链接一个是navfn的配置,一个是具体哪个global planner的配置,具体的global planner 是可以覆盖navfn中的配置(要是大家有相同的参数)

比如下面这个参数global planner中的可以覆盖navfn中的配置:

~<name>/allow_unknown (bool, default: true)

这个参数可以让你看见potential array的图像,看计算出的cost是怎么样子(颜色深浅代表距离起始点的远近)

~<name>/visualize_potential (bool, default: false)

code

void GlobalPlanner::initialize(std::string name, costmap_2d::Costmap2D* costmap, std::string frame_id) {
if(!old_navfn_behavior_)
convert_offset_ = 0.5;
else
convert_offset_ = 0.0; if (use_quadratic)
p_calc_ = new QuadraticCalculator(cx, cy);
else
p_calc_ = new PotentialCalculator(cx, cy); if (use_dijkstra)
{
DijkstraExpansion* de = new DijkstraExpansion(p_calc_, cx, cy);
if(!old_navfn_behavior_)
de->setPreciseStart(true);
planner_ = de;
}
else
planner_ = new AStarExpansion(p_calc_, cx, cy); if (use_grid_path)
path_maker_ = new GridPath(p_calc_);
else
path_maker_ = new GradientPath(p_calc_);
//发布一个make_plan的service
make_plan_srv_ = private_nh.advertiseService("make_plan", &GlobalPlanner::makePlanService, this); } bool GlobalPlanner::makePlanService(nav_msgs::GetPlan::Request& req, nav_msgs::GetPlan::Response& resp) {
makePlan(req.start, req.goal, resp.plan.poses);
} bool GlobalPlanner::makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal,
std::vector<geometry_msgs::PoseStamped>& plan) {
return makePlan(start, goal, default_tolerance_, plan);
} bool GlobalPlanner::makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal,
double tolerance, std::vector<geometry_msgs::PoseStamped>& plan) {
double wx = start.pose.position.x;
double wy = start.pose.position.y; if (!costmap_->worldToMap(wx, wy, start_x_i, start_y_i)) {
ROS_WARN("The robot's start position is off the global costmap. Planning will always fail, are you sure the robot has been properly localized?");
return false;
} if(old_navfn_behavior_){
start_x = start_x_i;
start_y = start_y_i;
}else{
worldToMap(wx, wy, start_x, start_y);
} wx = goal.pose.position.x;
wy = goal.pose.position.y; if (!costmap_->worldToMap(wx, wy, goal_x_i, goal_y_i)) {
ROS_WARN_THROTTLE(1.0,"The goal sent to the global planner is off the global costmap. Planning will always fail to this goal.");
return false;
}
if(old_navfn_behavior_){
goal_x = goal_x_i;
goal_y = goal_y_i;
}else{
worldToMap(wx, wy, goal_x, goal_y);
}
//clear the starting cell within the costmap because we know it can't be an obstacle
//设置起点为FREE_SPACE
clearRobotCell(start_pose, start_x_i, start_y_i); int nx = costmap_->getSizeInCellsX(), ny = costmap_->getSizeInCellsY(); //make sure to resize the underlying array that Navfn uses
p_calc_->setSize(nx, ny);
planner_->setSize(nx, ny);
path_maker_->setSize(nx, ny);
potential_array_ = new float[nx * ny]; //将costmap的四周(边界)变为LETHAL_OBSTACLE
outlineMap(costmap_->getCharMap(), nx, ny, costmap_2d::LETHAL_OBSTACLE); // 寻找potential array
bool found_legal = planner_->calculatePotentials(costmap_->getCharMap(), start_x, start_y, goal_x, goal_y,
nx * ny * 2, potential_array_);
//对终点的处理
if(!old_navfn_behavior_)
planner_->clearEndpoint(costmap_->getCharMap(), potential_array_, goal_x_i, goal_y_i, 2);
if(publish_potential_)
publishPotential(potential_array_); if (found_legal) {
//extract the plan,提取路径
if (getPlanFromPotential(start_x, start_y, goal_x, goal_y, goal, plan)) {
//make sure the goal we push on has the same timestamp as the rest of the plan
geometry_msgs::PoseStamped goal_copy = goal;
goal_copy.header.stamp = ros::Time::now();
plan.push_back(goal_copy);
} else {
ROS_ERROR("Failed to get a plan from potential when a legal potential was found. This shouldn't happen.");
}
}else{
ROS_ERROR("Failed to get a plan.");
} // add orientations if needed,对方向的处理
orientation_filter_->processPath(start, plan); //publish the plan for visualization purposes
publishPlan(plan);
delete potential_array_;
return !plan.empty(); nx * ny * 2, potential_array_);
}

主要是以下三个函数

可能不同的配置有不同的实现,但是每个函数的实现功能是一样的。

计算所有的可行点

namespace global_planner {
bool DijkstraExpansion::calculatePotentials(unsigned char* costs, double start_x, double start_y, double end_x, double end_y,
int cycles, float* potential) {
cells_visited_ = 0;
// priority buffers
threshold_ = lethal_cost_;
currentBuffer_ = buffer1_;
currentEnd_ = 0;
nextBuffer_ = buffer2_;
nextEnd_ = 0;
overBuffer_ = buffer3_;
overEnd_ = 0;
memset(pending_, 0, ns_ * sizeof(bool));
std::fill(potential, potential + ns_, POT_HIGH); // set goal
int k = toIndex(start_x, start_y); if(precise_)
{
double dx = start_x - (int)start_x, dy = start_y - (int)start_y;
dx = floorf(dx * 100 + 0.5) / 100;
dy = floorf(dy * 100 + 0.5) / 100;
potential[k] = neutral_cost_ * 2 * dx * dy;
potential[k+1] = neutral_cost_ * 2 * (1-dx)*dy;
potential[k+nx_] = neutral_cost_*2*dx*(1-dy);
potential[k+nx_+1] = neutral_cost_*2*(1-dx)*(1-dy);//*/ push_cur(k+2);
push_cur(k-1);
push_cur(k+nx_-1);
push_cur(k+nx_+2); push_cur(k-nx_);
push_cur(k-nx_+1);
push_cur(k+nx_*2);
push_cur(k+nx_*2+1);
}else{
potential[k] = 0;
push_cur(k+1);
push_cur(k-1);
push_cur(k-nx_);
push_cur(k+nx_);
} int nwv = 0; // max priority block size
int nc = 0; // number of cells put into priority blocks
int cycle = 0; // which cycle we're on // set up start cell
int startCell = toIndex(end_x, end_y); for (; cycle < cycles; cycle++) // go for this many cycles, unless interrupted
{
//
if (currentEnd_ == 0 && nextEnd_ == 0) // priority blocks empty
return false; // stats
nc += currentEnd_;
if (currentEnd_ > nwv)
nwv = currentEnd_; // reset pending_ flags on current priority buffer
int *pb = currentBuffer_;
int i = currentEnd_;
while (i-- > 0)
pending_[*(pb++)] = false; // process current priority buffer
pb = currentBuffer_;
i = currentEnd_;
while (i-- > 0)
updateCell(costs, potential, *pb++); // swap priority blocks currentBuffer_ <=> nextBuffer_
currentEnd_ = nextEnd_;
nextEnd_ = 0;
pb = currentBuffer_; // swap buffers
currentBuffer_ = nextBuffer_;
nextBuffer_ = pb; // see if we're done with this priority level
if (currentEnd_ == 0) {
threshold_ += priorityIncrement_; // increment priority threshold
currentEnd_ = overEnd_; // set current to overflow block
overEnd_ = 0;
pb = currentBuffer_; // swap buffers
currentBuffer_ = overBuffer_;
overBuffer_ = pb;
} // check if we've hit the Start cell
if (potential[startCell] < POT_HIGH)
break;
}
//ROS_INFO("CYCLES %d/%d ", cycle, cycles);
if (cycle < cycles)
return true; // finished up here
else
return false;计算路径path
}
}

怎么计算一个点的可行点

namespace global_planner {

float QuadraticCalculator::calculatePotential(float* potential, unsigned char cost, int n, float prev_potential) {
// get neighbors
float u, d, l, r;namespace
l = potential[n - 1];
r = potential[n + 1];
u = potential[n - nx_];
d = potential[n + nx_];
// ROS_INFO("[Update] c: %f l: %f r: %f u: %f d: %f\n",
// potential[n], l, r, u, d);
// ROS_INFO("[Update] cost: %d\n", costs[n]); // find lowest, and its lowest neighbor
float ta, tc;
if (l < r)
tc = l;
else
tc = r;
if (u < d)
ta = u;
else
ta = d; float hf = cost; // traversability factor
float dc = tc - ta; // relative cost between ta,tc
if (dc < 0) // tc is lowest
{
dc = -dc;
ta = tc;
} // calculate new potential
if (dc >= hf) // if too large, use ta-only update
return ta + hf;
else // two-neighbor interpolation update
{
// use quadratic approximation
// might speed this up through table lookup, but still have to
// do the divide
float d = dc / hf;
float v = -0.2301 * d * d + 0.5307 * d + 0.7040;
return ta + hf * v;
}
}
};

从可行点中计算路径path

bool GradientPath::getPath(float* potential, double start_x, double start_y, double goal_x, double goal_y, std::vector<std::pair<float, float> >& path) {
std::pair<float, float> current;
int stc = getIndex(goal_x, goal_y); // set up offset
float dx = goal_x - (int)goal_x;
float dy = goal_y - (int)goal_y;
int ns = xs_ * ys_;
memset(gradx_, 0, ns * sizeof(float));
memset(grady_, 0, ns * sizeof(float)); int c = 0;
while (c++<ns*4) {
// check if near goal
double nx = stc % xs_ + dx, ny = stc / xs_ + dy; if (fabs(nx - start_x) < .5 && fabs(ny - start_y) < .5) {
current.first = start_x;
current.second = start_y;
path.push_back(current);
return true;
} if (stc < xs_ || stc > xs_ * ys_ - xs_) // would be out of bounds
{
printf("[PathCalc] Out of bounds\n");
return false;
} current.first = nx;
current.second = ny; //ROS_INFO("%d %d | %f %f ", stc%xs_, stc/xs_, dx, dy); path.push_back(current); bool oscillation_detected = false;
int npath = path.size();
if (npath > 2 && path[npath - 1].first == path[npath - 3].first
&& path[npath - 1].second == path[npath - 3].second) {
ROS_DEBUG("[PathCalc] oscillation detected, attempting fix.");
oscillation_detected = true;
} int stcnx = stc + xs_;
int stcpx = stc - xs_; // check for potentials at eight positions near cell
if (potential[stc] >= POT_HIGH || potential[stc + 1] >= POT_HIGH || potential[stc - 1] >= POT_HIGH
|| potential[stcnx] >= POT_HIGH || potential[stcnx + 1] >= POT_HIGH || potential[stcnx - 1] >= POT_HIGH
|| potential[stcpx] >= POT_HIGH || potential[stcpx + 1] >= POT_HIGH || potential[stcpx - 1] >= POT_HIGH
|| oscillation_detected) {
ROS_DEBUG("[Path] Pot fn boundary, following grid (%0.1f/%d)", potential[stc], (int) path.size());
// check eight neighbors to find the lowest
int minc = stc;
int minp = potential[stc];
int st = stcpx - 1;
if (potential[st] < minp) {
minp = potential[st];
minc = st;
}
st++;
if (potential[st] < minp) {
minp = potential[st];
minc = st;
}
st++;
if (potential[st] < minp) {
minp = potential[st];
minc = st;
}
st = stc - 1;
if (potential[st] < minp) {
minp = potential[st];
minc = st;
}
st = stc + 1;
if (potential[st] < minp) {
minp = potential[st];
minc = st;
}
st = stcnx - 1;
if (potential[st] < minp) {
minp = potential[st];
minc = st;
}
st++;
if (potential[st] < minp) {
minp = potential[st];
minc = st;
}
st++;
if (potential[st] < minp) {
minp = potential[st];
minc = st;
}
stc = minc;
dx = 0;
dy = 0; //ROS_DEBUG("[Path] Pot: %0.1f pos: %0.1f,%0.1f",
// potential[stc], path[npath-1].first, path[npath-1].second); if (potential[stc] >= POT_HIGH) {
ROS_DEBUG("[PathCalc] No path found, high potential");
//savemap("navfn_highpot");
return 0;
}
} // have a good gradient here
else { // get grad at four positions near cell
gradCell(potential, stc);
gradCell(potential, stc + 1);
gradCell(potential, stcnx);
gradCell(potential, stcnx + 1); // get interpolated gradient
float x1 = (1.0 - dx) * gradx_[stc] + dx * gradx_[stc + 1];
float x2 = (1.0 - dx) * gradx_[stcnx] + dx * gradx_[stcnx + 1];
float x = (1.0 - dy) * x1 + dy * x2; // interpolated x
float y1 = (1.0 - dx) * grady_[stc] + dx * grady_[stc + 1];
float y2 = (1.0 - dx) * grady_[stcnx] + dx * grady_[stcnx + 1];
float y = (1.0 - dy) * y1 + dy * y2; // interpolated y // show gradients
ROS_DEBUG(
"[Path] %0.2f,%0.2f %0.2f,%0.2f %0.2f,%0.2f %0.2f,%0.2f; final x=%.3f, y=%.3f\n", gradx_[stc], grady_[stc], gradx_[stc+1], grady_[stc+1], gradx_[stcnx], grady_[stcnx], gradx_[stcnx+1], grady_[stcnx+1], x, y); // check for zero gradient, failed
if (x == 0.0 && y == 0.0) {
ROS_DEBUG("[PathCalc] Zero gradient");
return 0;
} // move in the right direction
float ss = pathStep_ / hypot(x, y);
dx += x * ss;
dy += y * ss; // check for overflow
if (dx > 1.0) {
stc++;
dx -= 1.0;
}
if (dx < -1.0) {
stc--;
dx += 1.0;
}
if (dy > 1.0) {
stc += xs_;
dy -= 1.0;
}
if (dy < -1.0) {
stc -= xs_;
dy += 1.0;
} } //printf("[Path] Pot: %0.1f grad: %0.1f,%0.1f pos: %0.1f,%0.1f\n",
// potential[stc], dx, dy, path[npath-1].first, path[npath-1].second);
} return false;
}

todo

sbpl,这也是个global planner,没有试过

move_base的全局路径规划代码研究的更多相关文章

  1. move_base的 局部路径规划代码研究

    base_local_planner teb_local_planner parameter code g2o base_local_planner ROS wiki Given a plan to ...

  2. ROS源码解读(二)--全局路径规划

    博客转载自:https://blog.csdn.net/xmy306538517/article/details/79032324 ROS中,机器人全局路径规划默认使用的是navfn包 ,move_b ...

  3. 全局路径规划算法Dijkstra(迪杰斯特拉算法)- matlab

    参考博客链接:https://www.cnblogs.com/kex1n/p/4178782.html Dijkstra是常用的全局路径规划算法,其本质上是一个最短路径寻优算法.算法的详细介绍参考上述 ...

  4. [python] A*算法基于栅格地图的全局路径规划

    # 所有节点的g值并没有初始化为无穷大 # 当两个子节点的f值一样时,程序选择最先搜索到的一个作为父节点加入closed # 对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径 # 最后c ...

  5. ROS探索总结(十四)——move_base(路径规划)

    在上一篇的博客中,我们一起学习了ROS定位于导航的总体框架,这一篇我们主要研究其中最重要的move_base包. 在总体框架图中可以看到,move_base提供了ROS导航的配置.运行.交互接口,它主 ...

  6. ROS机器人路径规划介绍--全局规划

    ROS机器人路径规划算法主要包括2个部分:1)全局路径规划算法:2)局部路径规划算法: 一.全局路径规划 global planner ROS 的navigation官方功能包提供了三种全局路径规划器 ...

  7. 【路径规划】 Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame (附python代码实例)

    参考与前言 2010年,论文 Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame 地址:https ...

  8. DWA局部路径规划算法论文阅读:The Dynamic Window Approach to Collision Avoidance。

    DWA(动态窗口)算法是用于局部路径规划的算法,已经在ROS中实现,在move_base堆栈中:http://wiki.ros.org/dwa_local_planner DWA算法第一次提出应该是1 ...

  9. ROS源码解读(一)--局部路径规划

    博客转载自:https://blog.csdn.net/xmy306538517/article/details/78772066 ROS局部路径导航包括Trajectory Rollout 和 Dy ...

随机推荐

  1. mybatis 加载配置文件的方法

    一.  使用sqlSessionFactory 的 mapperLocations 进行加载 <!-- SessionFactory --> <bean id="sqlSe ...

  2. $_SERVER['SCRIPT_FILENAME'] 与 __FILE__ 区别

    PHP $_SERVER['SCRIPT_FILENAME'] 与 __FILE__ 的区别 PHP $_SERVER['SCRIPT_FILENAME'] 与 __FILE__ 通常情况下,PHP ...

  3. 用javascript代码拼html

    公司新来的同事说,他们是用javascript代码拼html代码的,如果要修改值,就是修改对象的属性. 交代下,我们现在都是用拼字符串的方式拼html代码的.他提到如果写在单独的javascript文 ...

  4. lintcode-426-恢复IP地址

    426-恢复IP地址 给一个由数字组成的字符串.求出其可能恢复为的所有IP地址. 样例 给出字符串 "25525511135",所有可能的IP地址为: [ "255.25 ...

  5. 《DWZ笔记一》<select>动态联动菜单

    联动菜单,即组合框Combo box,在DWZ文档中对组合框combox的是这样描述的: 在传统的select 用class 定义:class=”combox”, html 扩展:保留原有属性name ...

  6. 【第一周】c++实现词频统计

    coding.net地址:https://coding.net/u/Boxer_ ssh:git@git.coding.net:Boxer_/homework.git ---------------- ...

  7. php伪静态配置

    配置虚拟主机和伪静态 1.开启Apache的rewrite模块 LoadModule rewrite_module modules/mod_rewrite.so 2.开启虚拟主机功能 # Virtua ...

  8. PHP《将画布(canvas)图像保存成本地图片的方法》

    用PHP将网页上的Canvas图像保存到服务器上的方法 2014年6月27日 歪脖骇客 发表回复 8 在几年前HTML5还没有流行的时候,我们的项目经理曾经向我提出这样一个需求:让项目评审专家们在评审 ...

  9. Linux下修改环境变量PATH

    1.什么是环境变量(PATH) 在Linux中,在执行命令时,系统会按照PATH的设置,去每个PATH定义的路径下搜索执行文件,先搜索到的文件先执行. 我们知道查阅文件属性的指令ls 完整文件名为:/ ...

  10. HDU 4758——Walk Through Squares——2013 ACM/ICPC Asia Regional Nanjing Online

    与其说这是一次重温AC自动机+dp,倒不如说这是个坑,而且把队友给深坑了. 这个题目都没A得出来,我只觉得我以前的AC自动机的题目都白刷了——深坑啊. 题目的意思是给你两个串,每个串只含有R或者D,要 ...