洛谷P1445 [Violet] 樱花

题目背景

我很愤怒

题目描述

求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6。

解的组数,应模1e9+7。

输入输出格式

输入格式:

输入一个整数N

输出格式:

输出答案

输入输出样例

输入样例#1:

1439

输出样例#1:

102426508

Solution

极其恶心的一道题...

看到这种题肯定是需要化简式子的,因为出题人不会好到给你一个好做的式子

\[\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}
\]

\[\frac{x+y}{xy}=\frac{1}{n!}
\]

\[xy=(n!)\times (x+y)
\]

一个骚操作,两边同时加上\((n!)^2\),为什么,因为方便因式分解...

\[(n!)^2-(n!)\times (x+y)+xy=(n!)^2
\]

然后因式分解

\[(n!-x)\times (n!-y)=(n!)^2
\]

令\(a=(n!-x),b=(n!-y)\),因为\((n!)^2\)是确定的,所以确定了\(a\),就可以确定\(b\),也就可以确定\(x,y\)了

那么a的方案数是多少?因为\(a\)是\((n!)^2\)的因子,所以\(a\)的取值的方案数就是\((n!)^2\)的因子的方案数

然后根据唯一分解定理

\[n!=p_1^{c_1}\times p_2^{c_2}\times ...\times p_m^{c_m}
\]

\[(n!)^2=p_1^{2\times c_1}\times p_2^{2\times c_2}\times ...\times p_m^{2\times c_m}
\]

由于每个质因子\(p_i\)都有\(2\times c_i+1\)种取值,所以

\[ans=(2\times c_1+1)\times (2\times c_2 +1)\times ...\times(2\times c_m+1)
\]

那么最后问题就转化成了对\(n!\)进行分解质因数,并求质因数的个数

暴力对\(1-n\)每个数分解质因数,再合并复杂度过高,为\(O(n\sqrt n)\)

由于\(n!\)的每个质因子都不超过n,所以我们可以预处理\(1-n\)内所有质数p,再考虑\(n!\)内一共有多少个质因子p

我们可以对于在线性筛质数的过程中同时处理一下n以内每个数的最小质因子\(p\),然后统计这个数的贡献,在\(1-n\)中至少包含一个质因子\(p\)的有\(\lfloor\frac{n}{p}\rfloor\),至少包含两个质因子p的有\(\lfloor\frac{n}{p^2}\rfloor\)...

那么\(n!\)中质因子\(p\)的个数就是

\[\lfloor\frac{n}{p}\rfloor+\lfloor\frac{n}{p^2}\rfloor+...+\lfloor\frac{n}{p^{log_{p}{n}}}\rfloor
\]

对于每个质因子,我们只需要\(log\ n\)的时间来求解,所以总复杂度是\(O(n\ log\ n)\)的

Code

#include<bits/stdc++.h>
#define rg register
#define il inline
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define lol long long
#define in(i) (i=read())
using namespace std; const lol N=1e6+10,mod=1e9+7; lol read() {
lol ans=0,f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0',i=getchar();
return ans*=f;
} lol n,cnt,ans=1;
lol g[N],prime[N],c[N]; void init() {
memset(g,0,sizeof(g));
for(int i=2;i<=n;i++) {
if(!g[i]) g[i]=i,prime[++cnt]=i;
for(int j=1;j<=cnt && i*prime[j]<=n;j++) {
g[i*prime[j]]=prime[j];
if(i%prime[j]==0) break;
}
}
} int main()
{
in(n); init();
for(int i=1;i<=n;i++)
for(int j=i;j!=1;j/=g[j]) c[g[j]]++;
for(int i=1;i<=n;i++) ans=ans*(c[i]*2+1)%mod;
cout<<ans<<endl;
}

洛谷P1445 [Violet] 樱花 (数学)的更多相关文章

  1. 【题解】洛谷P1445 [Violet]樱花 (推导+约数和)

    洛谷P1445:https://www.luogu.org/problemnew/show/P1445 推导过程 1/x+1/y=1/n! 设y=n!+k(k∈N∗) 1/x​+1/(n!+k)​=1 ...

  2. 洛谷 P1445 [Violet]樱花

    #include<cstdio> #include<algorithm> #include<cstring> #include<vector> usin ...

  3. BZOJ2721或洛谷1445 [Violet]樱花

    BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...

  4. bzoj2721 / P1445 [Violet]樱花

    P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...

  5. Luogu P1445[Violet]樱花/P4167 [Violet]樱花

    Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...

  6. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  7. 【洛谷 P1445】 [Violet]樱花(唯一分解定理)

    做了题还是忍不住要写一发题解,感觉楼下的不易懂啊. 本题解使用latex纯手写精心打造. 题意:求\(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\)的正整数解总数. 首先 ...

  8. 洛谷P1445 樱花

    题意:求 1/x + 1/y = 1/(n!)的正整数解个数. 解:神仙...... 设(n!) = t 打表发现 x ∈ [t+1 , 2t] 反正就是拿到式子以后乱搞一通然后发现得到了这个很美观的 ...

  9. 洛谷 P4169 [Violet]天使玩偶/SJY摆棋子 解题报告

    P4169 [Violet]天使玩偶/SJY摆棋子 题目描述 \(Ayu\)在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,\(Ayu\) 却忘了她把天使玩偶埋在了哪 ...

随机推荐

  1. day04 list tuple (补)

    今日内容: 1. 列表 2. 列表的增删改查 3. 列表的嵌套 4. 元组和元组嵌套 5. range 列表 列表: 能装对象的对象. 有顺序的(按照我们添加的顺序保存) 在代码中使用[]表示列表. ...

  2. 【Python入门学习】列表生成和函数生成器的方式实现杨辉三角

    列表生成: L = [i for i in range(10)] 列表生成器: g = (i for i in range(10)) 函数生成器使用的关键字yield实现 例如fib生成器 def f ...

  3. 第1章 Python基础

    一.安装Python windows: 1.下载安装包     https://www.python.org/downloads/ 2.安装     默认安装路径:C:\python27 3.配置环境 ...

  4. Python常用模块之VideoCapture

    官方网址:http://videocapture.sourceforge.net/   功能介绍: VideoCapture是Win32版Python的一个扩展,可以访问视频采集设备(如USB摄像头) ...

  5. Facebook190亿美元收购WhatsApp

    Facebook收购WhatsApp,前后只花费10天时间.这是Facebook迄今规模最大的一笔收购,可能也是史上最昂贵的一笔针对靠私人风投起家的企业的收购案. 2月9日,马克•扎克伯格(Mark ...

  6. Java中的网络编程-2

    Socket编程:(一般的网络编程) <1> 两个 JAVA 应用程序可通过一个双向的网络通信连接, 实现数据交换, 这个双向链路的一段称为一个 Socket. <2> Soc ...

  7. Servlet中常用对象及API类之间的关系

    Servlet最常用的对象: 请求对象:ServletRequest和HttpServletRequest,通过该对象获取来自客户端的请求信息 响应对象:ServletResponse和HttpSer ...

  8. JQuery EasyUI 引用加载分析

    easyui是什么,就不介绍了,接触到前端的就算没用过,肯定也应该听说过.其次,本文不是介绍它提供如calendar.tree等这些功能如何使用的,这些官网上介绍都很详细,中文的网上也不少.本文是从e ...

  9. 1st 构建之法读后感

    构建之法读后感 由于时间和书的篇幅所限,所以我没能真正通读全书,只通过网上的介绍和书内前言及目录,大概了解了构建之法是一本怎样的一本书. 这本书是由具有长达20年一线软件开发经验的邹欣老师所撰写,他以 ...

  10. PAT 甲级 1043 Is It a Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...