Matrix Power Series

Time Limit: 3000MS Memory Limit: 131072K

Total Submissions: 19338 Accepted: 8161

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4

0 1

1 1

Sample Output

1 2

2 3

可以找到递推关系 : s[k]=s[k-1]+A^k;

然后构造矩阵,利用矩阵快速幂

具体见代码

#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <stdlib.h> using namespace std;
int n,k;
int m;
struct Node
{
int a[65][65]; };
Node multiply(Node a,Node b)
{
Node c;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
c.a[i][j]=0;
for(int k=1;k<=n;k++)
{
(c.a[i][j]+=(a.a[i][k]*b.a[k][j])%m)%=m;
}
}
}
return c;
}
Node quick(Node a,int x)
{
Node c;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
c.a[i][j]=(i==j?1:0);
for(x;x>0;x>>=1)
{
if(x&1)
c=multiply(c,a);
a=multiply(a,a);
}
return c;
}
int main()
{
while( scanf("%d%d%d",&n,&k,&m)!=EOF)
{
Node a;Node b;Node c;
memset(a.a,0,sizeof(a.a));
memset(b.a,0,sizeof(b.a));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
scanf("%d",&a.a[i][j+n]);
b.a[i+n][j+n]=a.a[i][j+n];
}
for(int i=1;i<=n;i++)
{
b.a[i][i]=1;
b.a[i+n][i]=1;
}
n=n*2;
c=multiply(a,quick(b,k));
for(int i=1;i<=n/2;i++)
for(int j=1;j<=n/2;j++)
if(j==n/2)printf("%d\n",c.a[i][j]);
else printf("%d ",c.a[i][j]);
}
return 0;
}

POJ 3233 Matrix Power Series(矩阵快速幂)的更多相关文章

  1. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

  2. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  3. POJ 3233:Matrix Power Series 矩阵快速幂 乘积

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 18450   Accepted:  ...

  4. poj 3233 Matrix Power Series(矩阵二分,高速幂)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15739   Accepted:  ...

  5. POJ3233:Matrix Power Series(矩阵快速幂+二分)

    http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...

  6. poj 3233 Matrix Power Series 矩阵求和

    http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...

  7. POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 27277   Accepted:  ...

  8. Poj 3233 Matrix Power Series(矩阵乘法)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...

  9. POJ 3233 Matrix Power Series(矩阵高速功率+二分法)

    职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9.     这 ...

  10. POJ3233:Matrix Power Series(矩阵快速幂+递推式)

    传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...

随机推荐

  1. c语言中各种数据类型的长度

    在32位平台和64位平台上,同一种数据类型可能有不同的数据长度: 类型 32位平台 64位平台 char 1 1 short 2 2 int 4 4 long 4 8 long long 8 8 fl ...

  2. cocos2d 中使用jni Java 调用 C++ 方法

    1.首先是LoadLibrary cocos2d中的C++代码会编译成一个.so文件.放在安卓文件夹下的libs/armeabi 下,然后java会load进来,这步我们不用做了,由于cocos2d已 ...

  3. cocos2d-x实例学习之常用类及其概要作用

    CCLayer,CCScene CCLayer类对应cocos2d-x引擎里的布景.每个游戏场景中都可以有很多层,每一层负责各自的任务,例如专门负责显示背景.专门负责显示道具和专门负责显示人物角色等. ...

  4. Centos Java 从1.7升级为1.8

    查看安装的sdk版本 yum list installed |grep java 卸载JDK相关文件输入和tzdata-java输入 yum -y remove java-1.7.0-openjdk* ...

  5. web.config中的connectionString里面应该怎么写?

    2009-09-16 10:19信欣玛利 | 浏览 6068 次  网络 就是具体格式.. 谁能举个例子? asp.net 3.5的. 2009-09-16 10:40   提问者采纳   这是用来连 ...

  6. 使用burpsuite来扫描漏洞

    一张图说明全文.

  7. wpa wp2 psk的配置方式

    For WPA-PSK ctrl_interface=/var/run/wpa_supplicant ctrl_interface_group=0 eapol_version=1 fast_reaut ...

  8. ajax——优化0126(增删改查:添加查看详情,返回结果类型为JSON型,在窗口显示)

    效果: 鼠标点击查看详情时 数据库: 0126.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN&qu ...

  9. arduino知识

    如果你买过Adafruit, Sparkfun, Seeedstudio和Arduino Store的Kit,不难发现Arduino官方的无论从包装和印刷上都是最具艺术气质的,其次是Sparkfun, ...

  10. WEB 项目中JAVA取得WEBROOT物理路径

    http://wwwzhouhui.iteye.com/blog/504330 ———————————————————————————————————————————————————————————— ...