matlab练习程序(三阶张量T-QR分解)
转自:http://www.cnblogs.com/tiandsp/archive/2012/10/31/2747971.html
这里所谓的张量和黎曼那里的张量是不一样的,那个张量更多的用在物理上,这个张量就是矩阵的扩展。比如零阶张量就是数,一阶张量就是向量,二阶张量就是矩阵,三阶四阶就是更高维的数的集合。这个领域现在在数学上还都是很新的东西,矩阵的秩我们都知道怎么求,但是三维的张量或更高维的张量的秩现在在数学上也没有结果。至于张量的奇异值分解也只是也只是用很早的如用HOSVD来处理,我感觉这并不完全合适,新的分解算法就连老美也都没研究出来,从二维到多维的确有很多基础的理论都不适用了,像两个张量相乘这样基础的算法,现在虽然有,但我感觉也不是通用的,还要继续改进。
下面就是我看的一篇论文的张量相乘和分解方法,她的理论也可能不正确,不过这种新领域,大家都是在探索。
论文在这里:http://www.cs.tufts.edu/tech_reports/reports/2010-5/report.pdf,他主要介绍的是T-svd,T-svd分解后合成的只是原张量的一个近似结果,而T-QR就能得到一个准确的结果,所以我这里用了T-QR。以Matlab角度来看T-SVD和T-QR的代码其实是很类似的。
首先是两个函数的代码,放在.m文件中,文件名就是默认文件名(函数名)
1 mul.m
function c=mul(a,b) [a_n1 a_n2 a_n3]=size(a);
[b_n1 b_n2 b_n3]=size(b);
c=zeros(a_n1,b_n2,a_n3);
A=cell(a_n3,1);
B=cell(b_n3,1); for i=1:a_n3
A{i}=a(:,:,i);
B{i}=b(:,:,i);
end index_up=zeros(1,a_n3);
index_down=zeros(1,a_n3);
for i=1:a_n3
index_up(i)=a_n3-i+1;
index_down(i)=i;
end s=cell(a_n3,a_n3);
for i=1:a_n3
for j=1:a_n3
if i==j
s{i,j}=A{1};
end
if j>i
s{i,j}=A{index_up(j-i)};
end
if j<i
s{i,j}=A{index_down(i-j+1)};
end
end
end re=cell(a_n3,1);
for i=1:a_n3
re{i}=zeros(a_n1,b_n2);
end for i=1:a_n3
for j=1:a_n3
for k=1:1
re{i,k}=re{i,k}+s{i,j}*B{j,k};
end
end
end for i=1:a_n3
c(:,:,i)=re{i};
end end
2 transpos.m
function a=transpos(b)
[n1 n2 n3]=size(b);
a=zeros(n2,n1,n3);
for i=1:n3
a(:,:,i)=b(:,:,i)';
end
end
最后是在matlab命令行中的代码:
clear all;
close all;
clc;
n1=3;
n2=3;
n3=3; A(:,:,1)=[10 23 34;43 55 63;72 85 96];
A(:,:,2)=[24 17 35;52 36 55;81 94 75];
A(:,:,3)=[65 16 52;21 47 78;92 33 43];
%A=imread('s.jpg'); D=fft(A,[],3); for i=1:n3
[q r]=qr(D(:,:,i));
%[u s v]=svd(D(:,:,i));
Q(:,:,i)=q;
R(:,:,i)=r;
%S(:,:,i)=s;
end
Q=ifft(Q,[],3);
R=ifft(R,[],3);
%S=ifft(S,[],3); B(:,:,1)=eye(n1,n2);
B(:,:,2)=zeros(n1,n2);
B(:,:,3)=zeros(n1,n2); %c=mul(mul(U,S),transpos(V));
c=mul(Q,R);
c
matlab练习程序(三阶张量T-QR分解)的更多相关文章
- QR分解与最小二乘
主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的 ...
- QR分解与最小二乘(转载自AndyJee)
转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一. ...
- QR分解
从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...
- matlab练习程序(SUSAN检测)
matlab练习程序(SUSAN检测) SUSAN算子既可以检测角点也可以检测边缘,不过角点似乎比不过harris,边缘似乎比不过Canny.不过思想还是有点意思的. 主要思想就是:首先做一个和原图像 ...
- 机器学习中的矩阵方法03:QR 分解
1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...
- (转)matlab练习程序(HOG方向梯度直方图)
matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...
- QR 分解
将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质. 预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着 ...
- QR分解迭代求特征值——原生python实现(不使用numpy)
QR分解: 有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法 具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6 ...
- 矩阵QR分解
1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量 相互垂直,且模长为1: 如果将 orthonormal 向量按列组织成矩阵,矩阵为 ...
随机推荐
- XamarinForms教程构建XamarinForms开发环境
构建XamarinForms开发环境 所谓Xamarin.Forms的开发环境,就是指在基本硬件和数字软件的基础上,为支持系统软件和应用软件的工程化开发和维护而使用的一组软件,简称SDE.对于任何的程 ...
- 安装与配置ironic
安装及配置 由于Ironic的配置很长,下面我们简短的说一下安装和配置过程,具体的安装配置教程参考官方手动配置教程或者使用devstack安装. Ironic需要与Nova.Neutron.Glanc ...
- Selenium之PhantomJS相关设置
设置PhantomJS请求头 默认情况下: from selenium import webdriver import time driver = webdriver.PhantomJS() driv ...
- Hibernate hql(hibernate query language)基础查询
在开发过程中,数据库的操作我们其实更多的用到的是查询功能,今天开始学习hql的查询. 1.加入必要的工具 2.Hibernate配备的一种非常强大的查询语言,这种查询语言看上去很像sql.但是不要被语 ...
- scp使用笔记
yum install openssh-clients 就能使用了 上传 microgolds-prodeMacBook-Pro:Desktop mg$ sudo scp /Users/mg/Desk ...
- JAVA EE 博客实例
http://www.cnblogs.com/hoojo/category/276244.html
- MEF 导入(Import)和导出(Export)
前言: MEF不同于其他IOC容器(如:Castle)很重要的原因在于它使用了特性化编程模型(涉及到两个概念:“特性”和“编程模型”). 特性(Attribute):举例来说就是我们在开发过程中在类上 ...
- QMsgPack的用法DEMO
QMsgPack的用法DEMO 引用单元文件: uses qstring, qmsgpack, qjson; 演示一: procedure TForm2.Button10Click(Sender: T ...
- 11.2 为什么要使用 MVC
以前的大部分应用程序(非Android应用)都是用像ASP.PHP或者CFML这样的过程化(自PHP5.0版本后已全面支持面向对象模型)语言来创建的.它们将像数据库查询语句这样的数据层代码和像HTML ...
- oracle sql 优化大全
转自: http://panshaobinsb.iteye.com/blog/1718233 http://yulimeander.blog.sohu.com/115850824.html 最近遇到了 ...