Hive的UDF包括3种:UDF(User-Defined Function)、UDAF(User-Defined Aggregate Function)和UDTF(User-Defined Table-Generating Function),Hive只支持Java编写UDF,其他的编程语言只能通过select transform转化为流来与Hive交互。

UDF(User-Defined Function):支持一个输入产生一个输出。继承自org.apache.hadoop.hive.ql.exec.UDF,并实现evaluate方法。

1、代码实现

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class Lower2Upper extends UDF {

  public Text evaluate(Text text,String up_low){
    if(text==null){
      return null;
    }else if(up_low.equals("lowercase")){
      return new Text(text.toString().toLowerCase());
    }else if(up_low.equals("uppercase")){
      return new Text(text.toString().toUpperCase());
    }else{
      return null;
    }
  }

}

2、打包,并放到hive所在的机器

3、进入hive的shell,用add jar命令把jar包导入到hive的环境变量中,用create temporary function as 命令基于jar包中的类创建临时函数。

hive>add jar /home/user/lowupper.jar;
hive>create temporary function lowupper as 'com.upit.hive.udf.Low2Upper';
hive>select lowupper(name,'uppercase') from userinfo;

4、销毁不再需要的函数

hive>drop temporary function lowupper;

注意:lowupper为临时的函数,所以每次进入都需要add jar以及create temporary操作。

UDAF(User-Defined Aggregate Function):支持多个输入一个输出。继承org.apache.hadoop.hive.ql.exec.UDAF类,实现org.apache.hadoop.hive.ql.exec.UDAFvaluator接口。UDAFvaluator接口有5个方法,分别如下:

  • int  方法负责对中间结果实现初始化
  • iterate  接收传入的参数,并进行内部的轮转,其返回类型为boolean
  • terminaePartial  没有参数,负责返回iterate函数轮转后的数据
  • merge  接收terminatePartial的返回结果,合并接收的蹭值,返回类型为boolean
  • terminate  返回最终结果

import org.apache.hadoop.hive.ql.exec.NumericUDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
import org.apache.hadoop.hive.serde2.io.DoubleWritable;

public class UDAFSum_Sample extends NumericUDAF {
  public static class Evaluator implements UDAFEvaluator{
    private boolean mEmpty;
    private double mSum;
    public Evaluator(){
      super();
      init();
    }
    @Override
    public void init() {
      mSum=0;
      mEmpty=true;
    }
    public boolean iterate(DoubleWritable o){
      if(o!=null){
        mSum+=o.get();
        mEmpty=false;
      }
      return true;
    }
    public DoubleWritable terminatePartial(){
      return mEmpty?null:new DoubleWritable(mSum);
    }
    public boolean merge(DoubleWritable o){
      if(o!=null){
        mSum+=o.get();
        mEmpty=false;
      }
      return true;
    }
    public DoubleWritable terminate(){
      return mEmpty?null:new DoubleWritable(mSum);
    }
  }
}

关于UDAF开发应注意以下几点:

  • import org.apache.hadoop.hive.ql.exec.UDAF以及org.apache.hadoop.hive.ql.exec.UDAFEvaluator包都是必需的。
  • 函数类需要继承UDAF类,内部类Evaluator实现UDAFEvaluator接口。
  • Evaluator需要实现init、iterate、terminatePartial、merge、terminate这几个函数。
  • init函数类似于构造函数,用于UDAF的初始化。
  • iterate接收传入的参数,并进行内部的轮转,其返回类型为boolean。
  • terminatePartial无参数,其为iterate函数轮转结束后返回的轮转数据,iterate和terminatePartial类似于Hadoop的Combiner.
  • merge接收terminatePartial的返回结果,进行数据merge操作,其返回类型为boolean。
  • terminate返回最终的聚集函数结果。

UDTF(User-Defined Table-Generating Function):支持一个输入多个输出。

1、如何实现UDTF

继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF。

实现initialize, process, close三个方法

UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型)。初始化完成后,会调用process方法,对传入的参数进行处理,可以通过forword()方法把结果返回。最后close()方法调用,对需要清理的方法进行清理

2、实例

如下代码对形如key:value;key:value;格式的字符串分拆成key,value,返回结果为key, value两个字段

import java.util.ArrayList;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;

public class ExplodeMap extends GenericUDTF {
  @Override
  public void close() throws HiveException {}

  @Override
  public StructObjectInspector initialize(ObjectInspector[] args)throws UDFArgumentException {
    if (args.length != 1) {
      throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
    }
    if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
      throw new UDFArgumentException("ExplodeMap takes string as a parameter");
    }
    ArrayList<String> fieldNames = new ArrayList<String>();
    ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
    fieldNames.add("col1");
    fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
    fieldNames.add("col2");
    fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
    return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
  }

  @Override
  public void process(Object[] args) throws HiveException {
    String input = args[0].toString();
    String[] test = input.split(";");
    for (int i = 0; i < test.length; i++) {
      try {
        String[] result = test[i].split(":");
        forward(result);
      } catch (Exception e) {
        continue;
      }
    }
  }
}

3、 如何使用UDTF

3.1、在select中使用UDTF

select explode_map(properties) as (col1,col2) from my_table

不可以添加其他字段使用:select a, explode_map(properties) as (col1,col2) from my_table

不可以嵌套调用:select explode_map(explode_map(properties)) from my_table

不可以和group by/cluster by/distribute by/sort by一起使用:select explode_map(properties) as (col1,col2) from src group by col1, col2

3.2、结合lateral view使用

select src.id, mytable.col1, mytable.col2 from src lateral view explode_map(properties) mytable as col1, col2;

此方法更为方便日常使用。执行过程相当于单独执行了两次抽取,然后union到一个表里。

4、总结

使用lateral view之后,那么col1和col2相当于普通的列,可以参与查询,计算

2、Hive UDF编程实例的更多相关文章

  1. hive udf编程教程

    hive udf编程教程 https://blog.csdn.net/u010376788/article/details/50532166

  2. HIVE: UDF应用实例

    数据文件内容 TEST DATA HERE Good to Go 我们准备写一个函数,把所有字符变为小写. 1.开发UDF package MyTestPackage; import org.apac ...

  3. Hive UDF 用户自定义函数 编程及使用

    首先创建工程编写UDF 代码,示例如下: 1. 新建Maven项目 udf 本机Hadoop版本为2.7.7, Hive版本为1.2.2,所以选择对应版本的jar ,其它版本也不影响编译. 2. po ...

  4. 2.13 Hive中自带Function使用及自定义UDF编程

    UDF:User Definition Function 一.function #查看自带的函数 hive (db_hive)> show functions; #查看一个函数的详细用法 hiv ...

  5. HIVE udf实例

    本例中udf来自<hive编程指南>其中13章自定义函数中一个例子. 按照步骤,第一步,建立一个项目,创建 GenericUDFNvl 类. /** * 不能接受第一个参数为null的情况 ...

  6. Hive UDF初探

    1. 引言 在前一篇中,解决了Hive表中复杂数据结构平铺化以导入Kylin的问题,但是平铺之后计算广告日志的曝光PV是翻倍的,因为一个用户对应于多个标签.所以,为了计算曝光PV,我们得另外创建视图. ...

  7. PHP多进程编程实例

    这篇文章主要介绍了PHP多进程编程实例,本文讲解的是在Linux下实现PHP多进程编程,需要的朋友可以参考下 羡慕火影忍者里鸣人的影分身么?没错,PHP程序是可以开动影分身的!想完成任务,又觉得一个进 ...

  8. c#摄像头编程实例 (转)

    c#摄像头编程实例 摄像头编程 安装摄像头后,一般可以找到一个avicap32.dll文件 这是一个关于设想头的类 using  system;using  System.Runtime.Intero ...

  9. Hive UDF 实验1

    项目中使用的hive版本低于0.11,无法使用hive在0.11中新加的开窗分析函数. 在项目中需要使用到row_number()函数的地方,有人写了udf来实现这个功能. new java proj ...

随机推荐

  1. redis安装配置记录

    环境:CentOS7,最小化安装 安装gcc wget # yum upgrade # yum install gcc # yum install wget 下载并安装redis # wget htt ...

  2. weblogic应用加载不上

    这个的问题是编译的问题,在web-inf文件中的classes中少了config文件夹的配置信息 可在项目的build path 中的source中配置

  3. [置顶] Deep Learning 学习笔记

    一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不 ...

  4. charles抓包--手机端

    Fiddler和charles都是抓包工具,可以抓到pc端的请求,手机上设置代理后也可以抓到手机上的请求,也可以修改请求数据和返回的数据. 在接口已经使用的时候,比如说已经用到了app上,app端测试 ...

  5. [Python] dict字典排序和多条件排序

    利用lambda实现排序:要实现多条件排序,只需要依次指定排序的标准,具体实现如下 counter = {'是': 1, '不是': 1, '你': 3} counter_list = sorted( ...

  6. 快速生成树RTSP

    Note: 数据分组:

  7. 跟踪Makefile输出调试信息

    /********************************************************************* * 跟踪Makefile输出调试信息 * 说明: * 有时 ...

  8. using中StreamWriter XmlWriter 区别

    使用StreamWriter using (var writer = new StreamWriter(File.Create(path))) { writer.WriteLine("sdf ...

  9. Eclipse自动补全设置与Eclipse源代码下载

    以前使用VisualStudio和Sublime写代码的时候有很完善的代码提示,但是最近开始使用Eclipse弄JAVA的时候发现它的代码提示不是很习惯.上网找了一些资料,修改了代码提示的方式,记录在 ...

  10. selenium-java,UI自动化截图方法

    截图方法: import java.io.File; import java.io.IOException; import org.apache.commons.io.FileUtils; impor ...