【BZOJ3120】Line

Description

Wayne喜欢排队……不对,是Wayne所在学校的校长喜欢看大家排队,尤其是在操场上站方阵。
某日课间操时,校长童心大发想了一个极具观赏性的列队方案,如下:
1. 方阵排成N行,每行恰好M个学生。
2. 由于校长喜欢女孩子,所以在一行上不能有连续P个男生。
3. 由于校长喜欢女孩子,所以在校长看来,一列全是男生是不好的,全男生的列数不能超过Q。
Wayne因为感冒了所以不用参加列队,不过他看着大家排队排得不亦乐乎,于是他想知道,在男女生数目无限制的情况下,有多少种列队方案?
两种方案被视作不同,表明存在至少一个二元组(i,j)而两种方案中第i行第j列的同学性别不同。另外,因为答案可能很大,所以请把答案模10^9 + 7。

Input

输入仅一行4个正整数,依次是N,M,P,Q。

Output

输出仅一行,表示答案。

Sample Input

2 3 3 1

Sample Output

46

HINT

【数据规模和约定】
对于5%的数据,满足P = 1。
对于另外10%的数据,满足N * M <= 20。
对于另外15%的数据,满足N <= 2,M <= 10^6。
对于另外10%的数据,满足N <= 2。
对于另外20%的数据,满足N <= 4,P <= 2,Q <= 2。
对于100%的数据,满足1 <= N <= 8,1 <= M <= 10^18,1 <= P <= 3,0 <= Q <= 3。

题解:刚看到题,第一反应是状压+矩乘,不过算了算矩阵的大小有点难以接受。不过读了读题,发现行与行之间是互不影响的,所以我们只需要知道每一列男生女生的个数即可。

用f[i][a][b][c]表示第i列有a行有连续0个男生,b行有连续1个男生,n-a-b行有连续2个男生,已经有c行全是男生的方案数,然后把后面那3维压一压变成矩阵就可以用矩乘来优化了。

注意:a+b>n的情况显然不合法,把它扔掉可以压缩矩阵大小;矩乘时特判如果该位置为0,则不进行计算,居然会快很多。

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const int P=1000000007;
int n,p,q,tot;
ll m,ans;
struct M
{
int v[200][200];
M () {memset(v,0,sizeof(v));}
int * operator [] (int a) {return v[a];}
inline M operator * (const M &b) const
{
M c;
register int i,j,k;
for(i=1;i<=tot;i++) for(k=1;k<=tot;k++) if(v[i][k])
for(j=1;j<=tot;j++) if(b.v[k][j])
c[i][j]=(c[i][j]+(ll)v[i][k]*b.v[k][j])%P;
return c;
}
}S,T;
ll C[10][10];
int _[10][10][5],__[10][5];
//a0 b1 c2
inline void pm(ll y)
{
while(y)
{
if(y&1) S=S*T;
T=T*T,y>>=1;
}
}
int main()
{
scanf("%d%lld%d%d",&n,&m,&p,&q);
int i,j,a,b,a1,b1,x,y;
for(i=0;i<=n;i++)
{
C[i][0]=1;
for(j=1;j<=i;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%P;
}
if(p==1)
{
printf("1");
return 0;
}
if(p==2)
{
for(a=0;a<=n;a++) for(b=0;b<=q;b++) __[a][b]=++tot;
for(a=0;a<=n;a++) for(a1=0;a1<=a;a1++)
{
x=n-a1;
if(a1<n) for(i=0;i<=q;i++) T[__[a][i]][__[x][i]]=C[a][a1];
else for(i=0;i<q;i++) T[__[a][i]][__[x][i+1]]=C[a][a1];
}
S[1][__[n][0]]=1;
pm(m);
for(i=1;i<=tot;i++) ans=(ans+S[1][i])%P;
printf("%lld",ans);
return 0;
}
for(a=0;a<=n;a++) for(b=0;a+b<=n;b++) for(i=0;i<=q;i++) _[a][b][i]=++tot;
for(a=0;a<=n;a++) for(b=0;a+b<=n;b++)
{
for(a1=0;a1<=a;a1++) for(b1=0;b1<=b;b1++)
{
x=n-a1-b1,y=a1;
if(a1+b1<n) for(i=0;i<=q;i++) T[_[a][b][i]][_[x][y][i]]=C[a][a1]*C[b][b1]%P;
else for(i=0;i<q;i++) T[_[a][b][i]][_[x][y][i+1]]=C[a][a1]*C[b][b1]%P;
}
}
S[1][_[n][0][0]]=1;
pm(m);
for(i=1;i<=tot;i++) ans=(ans+S[1][i])%P;
printf("%lld",ans);
return 0;
}//8 1000000000000000000 3 3

【BZOJ3120】Line 矩阵乘法的更多相关文章

  1. *HDU 1757 矩阵乘法

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. POJ3070 Fibonacci[矩阵乘法]

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  3. 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法

    C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...

  4. 矩阵乘法的MapReduce实现

    对于任意矩阵M和N,若矩阵M的列数等于矩阵N的行数,则记M和N的乘积为P=M*N,其中mik 记做矩阵M的第i行和第k列,nkj记做矩阵N的第k行和第j列,则矩阵P中,第i行第j列的元素可表示为公式( ...

  5. hdu4920 Matrix multiplication 模3矩阵乘法

    hdu4920 Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  6. 矩阵乘法快速幂 codevs 1250 Fibonacci数列

    codevs 1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description 定义:f0=f1=1 ...

  7. POJ3613 Cow Relays [矩阵乘法 floyd类似]

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7335   Accepted: 2878 Descri ...

  8. 【POJ2778】AC自动机+矩阵乘法

    DNA Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14758 Accepted: 5716 Descrip ...

  9. 数学(矩阵乘法):HDU 4565 So Easy!

    So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. Win32 SDK - 打开文件对话框

    OPENFILENAME ofn; // common dialog box structure TCHAR szFile[MAX_PATH]; // buffer for file name // ...

  2. C# ManualResetEvent

    文章转载自:C# ManualResetEvent ManualResetEvent被用于在两个或多个线程间进行线程信号发送. 多个线程可以通过调用ManualResetEvent对象的WaitOne ...

  3. cocos2dx, 重新initWithSpriteFrameName与重新setTexture()+setTextureRect()区别

    比如我们有一个sprite是通过createWithSpriteFrameName创建的,现在我们需要为其更换贴图,有两种方法: 一种方法是再次调用createWithSpriteFrameName, ...

  4. ubuntu内部错误的解决办法

    在ubuntu使用过程中,出现下面错误: 对不起,Ubuntu 16.04出现了内部错误. 这并不是ubuntu16.04特有的问题,好像每一个ubuntu版本都有类似的问题. 解决的办法有2个. 1 ...

  5. 【Android】13.1 用Android自带的API访问SQLite数据库

    分类:C#.Android.VS2015: 创建日期:2016-02-26 一.简介 这一节我们先来看看如何直接用Android自带的API创建和访问SQLite数据库. 1.创建SQLite数据库 ...

  6. 使用 C# 开发智能手机软件:推箱子(十八)

    这是"使用 C# 开发智能手机软件:推箱子" 系列文章的第十八篇.在这篇文章中.介绍 Window/SelectLevelDlg.cs 源程序文件. 这个源程序文件包括 Selec ...

  7. 基于jquery和svg超炫的网页动画

    今天给大家分享一款基于jquery和svg超炫的网页动画.这款动画效果非常炫.下面还有重播.慢速.和反向动画按钮.效果非常漂亮.一起看下效果图: 在线预览   源码下载 实现的代码. html代码: ...

  8. 跟着百度学PHP[13]-文件处理 文件后缀验证、设置随机文件名....

    目录: 文件的处理:00x1 判断错误 文件的处理:00x2 判断类型 文件的处理:00x3 文件大小 ++++++++++++++++++++++++++++++++++++++++++++++++ ...

  9. Java之旅hibernate(8)——基本关系映射

    何为关系,何为映射,关系这个词想必大家都不陌生.比方你和老师之间是师生关系,你和父母之间是父子或者父女(母子或者母女关系). 关系是存在某种联系物体之间产生的.什么都是可能的.比方你和工具,你仅仅能使 ...

  10. PHP——0127加登录页面,加查询,加方法,加提示框

    数据库mydb 表格info,nation,login 效果 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN ...