《利用Python进行数据分析》笔记---第4章NumPy基础:数组和矢量计算
写在前面的话:
实例中的所有数据都是在GitHub上下载的,打包下载即可。
地址是:http://github.com/pydata/pydata-book
还有一定要说明的:
我使用的是Python2.7,书中的代码有一些有错误,我使用自己的2.7版本调通。
# coding: utf-8
import numpy as np
data1 = [6.,7.5,8.,0.,1.]
arr1 = np.array(data1)
arr1
data2 = [[1,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)
arr2
arr2.ndim
arr2.shape
arr1.dtype
arr2.dtype
np.zeros(10)
np.zeros_like(10)
np.ones((3,6))
np.empty((2,3,2))
np.arange(15)
arr1 = np.array([1,2,3],dtype=np.float64)
arr2 = np.array([1,2,3],dtype=np.int32)
arr1.dtype
arr2.dtype
arr = np.array([1,2,3,4,5])
arr.dtype
float_arr = arr.astype(np.float64)
float_arr.dtype
arr = np.array([3.7,-1.2,-2.6,0.5,12.9,10.1])
arr
arr.astype(np.int32)
numeric_strings = np.array(['1.25','56.36','36.235'],dtype=np.string_)
numeric_strings.astype(float)
int_array = np.array(10)
calibers = np.array([.22,.270,.357,.380,.44,.50],dtype=np.float64)
int_array.astype(calibers.dtype)
empty_uint32 = np.empty(8,dtype='u4')
empty_uint32
arr = np.array([[1.,2.,3.],[4.,5.,6.]])
arr
arr * arr
arr - arr
1/arr
arr ** 0.5
arr = np.arange(10)
arr
arr[5]
arr[5:8]
arr
arr_slice = arr[5:8]
arr_slice[1] = 12345
arr
arr_slice[:] = 64
arr
arr2d = np.array([[1,2,3],[4,5,6],[7,8,9]])
arr2d[2]
arr2d[0][2]
arr2d[0,2]
arr3d = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
arr3d
arr3d[0]
old_values = arr3d[0].copy()
arr3d[0] = 42
arr3d
arr3d[0] = old_values
arr3d
arr3d[1,0,1]
arr[1:6]
arr2d
arr2d[:2]
arr2d[:2,1:]
arr2d[1,:2]
arr2d[2,:1]
arr2d[:,:1]
arr2d[:2,1:] = 0
arr2d
names = np.array(['Bob','Joe','Will','Bob','Will','Joe','Joe'])
names
import numpy.random as npr
data = npr.randn(7,4)
data
names == 'Bob'
data[names == 'Bob']
data[names == 'Bob', 2:]
data[names == 'Bob', 3]
names != 'Bob'
data[-(names == 'Bob')]
mask = (names == 'Bob') | (names == 'Will')
mask
data[mask]
data[data < 0] = 0
data
data[names != 'Joe'] = 7
arr = np.empty((8,4))
for i in range(8):
arr[i] = i
arr
arr[[4,3,0,6]]
arr[[-3,-5,-7]]
arr = np.arange(32).reshape((8,4))
arr
arr[[1,5,7,2],[0,3,1,2]]
arr[[1,5,7,2]][:,[0,3,1,2]]
arr[np.ix_([1,5,7,2],[0,3,1,2])]
arr = np.arange(15).reshape((3,5))
arr
arr.T
arr = np.random.randn(6,3)
np.dot(arr.T,arr)
arr = np.arange(16).reshape((2,2,4))
arr
arr.transpose((1,0,2))
arr.swapaxes(1,2)
arr = np.arange(10)
np.sqrt(arr)
np.exp(arr)
x = npr.randn(8)
y = npr.randn(8)
x
y
np.maximum(x,y)
arr = npr.randn(7) * 5
np.modf(arr)
points = np.arange(-5,5,0.01)
xs,ys = np.meshgrid(points,points)
ys
import matplotlib.pyplot as plt
z = np.sqrt(xs ** 2 + ys ** 2)
z
plt.imshow(z,cmap=plt.cm.gray);plt.colorbar()
plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values")
xarr = np.array([1.1,1.2,1.3,1.4,1.5])
yarr = np.array([2.1,2.2,2.3,2.4,2.5])
cond = np.array([True,False,True,True,False])
result = [(x if c else y) for x,y,c in zip(xarr,yarr,cond)]
result
result = np.where(cond,xarr,yarr)
result
arr = npr.randn(4,4)
arr
np.where(arr>0,2,-2)
np.where(arr>0,2,arr)
arr = np.random.randn(5,4)
arr.mean()
np.mean(arr)
arr.sum()
arr.mean(axis=1)
arr.sum(0)
arr = np.array([[0,1,2],[3,4,5],[6,7,8]])
arr.cumsum(0)
arr.cumprod(1)
arr =npr.randn(100)
(arr > 0).sum()
bools =np.array([False,False,True,False])
bools.any()
bools.all()
arr = npr.randn(8)
arr
arr.sort()
arr
arr = npr.randn(5,3)
arr
arr.sort(1)
arr
large_arr = npr.randn(1000)
large_arr.sort()
large_arr[int(0.05 * len(large_arr))]
np.unique(names)
ints = np.array([3,3,3,2,2,1,1,55,55,6,6,])
np.unique(ints)
sorted(set(names))
values = np.array([6,0,0,3,2,5,6])
np.in1d(values,[2,3,6])
arr = np.arange(10)
np.save('some_array',arr)
np.load('some_array.npy')
x = np.array([[1,2,3],[4,5,6]])
y = np.array([[6,23],[-1,7],[8,9]])
x.dot(y)
np.dot(x,np.ones(3))
from numpy.linalg import inv,qr
X = npr.randn(5,5)
mat = X.T.dot(X)
inv(mat)
mat.dot(inv(mat))
q,r = qr(mat)
r
samples = np.random.normal(size=(4,4))
samples
from random import normalvariate
N = 1000000
samples = [normalvariate(0,1) for _ in xrange(N)]
import random
position = 0
walk = [position]
steps = 1000;
for i in xrange(steps):
step = 1 if random.randint(0,1) else -1
position += step
walk.append(position)
nwalks = 5000
nsteps = 1000
draws = np.random.randint(0,2,size=(nwalks,nsteps))
steps = np.where(draws>0,1,-1)
walk = steps.cumsum(1)
walk.min()
walk.max()
(np.abs(walk) >= 10).argmax()
nwalks
《利用Python进行数据分析》笔记---第4章NumPy基础:数组和矢量计算的更多相关文章
- python numpy基础 数组和矢量计算
在python 中有时候我们用数组操作数据可以极大的提升数据的处理效率, 类似于R的向量化操作,是的数据的操作趋于简单化,在python 中是使用numpy模块可以进行数组和矢量计算. 下面来看下简单 ...
- python数据分析 Numpy基础 数组和矢量计算
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...
- 利用Python进行数据分析 第4章 NumPy基础-数组与向量化计算(3)
4.2 通用函数:快速的元素级数组函数 通用函数(即ufunc)是一种对ndarray中的数据执行元素级运算的函数. 1)一元(unary)ufunc,如,sqrt和exp函数 2)二元(unary) ...
- 《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说, ...
- 《利用Python进行数据分析》第4章学习笔记
NumPy基础:数组和矢量计算 NumPy的ndarray:一种多维数组对象 该对象是一个快速灵活的大数据集容器.你可以利用这种数组对整块数据执行一些数学运算,其语法跟标量元素之间的运算一样 列表转换 ...
- 《利用Python进行数据分析》第8章学习笔记
绘图和可视化 matplotlib入门 创建窗口和画布 fig = plt.figure() ax1 = fig.add_subplot(2,2,1) ax2 = fig.add_subplot(2, ...
- 《利用Python进行数据分析》第6章学习笔记
数据加载.存储与文件格式 读写文本格式的数据 逐块读取文本文件 read_xsv参数nrows=x 要逐块读取文件,需要设置chunksize(行数),返回一个TextParser对象. 还有一个ge ...
- 《利用Python进行数据分析》第7章学习笔记
数据规整化:清理.转换.合并.重塑 合并数据集 pandas.merge pandas.concat combine_first 数据库风格的DataFrame合并 索引上的合并 join()实例方法 ...
- 《利用Python进行数据分析》第123章学习笔记
引言 1 列表推导式 records = [json.loads(line) for line in open(path)] 这是一种在一组字符串(或一组别的对象)上执行一条相同操作(如json.lo ...
- 《利用Python进行数据分析》第5章学习笔记
pandas入门 数据结构 Series Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成.仅由一组数据即可产生最简单的Serie ...
随机推荐
- 二叉树的层次遍历(Java代码实现)
与树的前中后序遍历的DFS思想不同,层次遍历用到的是BFS思想.一般DFS用递归去实现(也可以用栈实现),BFS需要用队列去实现. 层次遍历的步骤是: 1.对于不为空的结点,先把该结点加入到队列中 2 ...
- git pull 分支问题
问题: 是因为本地分支与远程分支没有链接关系, 让他们建立链接关系
- 锁(1)-- java锁
前言: 锁分3种:java锁.分布式锁.DB锁 在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 公平锁/非公平锁 可重入锁 独享锁/共享锁 互斥锁 ...
- Android -- ContentProvider, 读取和保存系统 联系人
1. 示例代码 需要的读写联系人的权限 <uses-permission android:name="android.permission.WRITE_CONTACTS"/& ...
- 【转发】Linux中设置服务自启动的三种方式
有时候我们需要Linux系统在开机的时候自动加载某些脚本或系统服务 主要用三种方式进行这一操作: ln -s 在/etc/rc.d/rc*.d目录中建立/e ...
- iOS中的二维数组
首先我们知道OC中是没有二维数组的,二维数组是通过一位数组的嵌套实现的,但是别忘了我们有字面量,实际上可以和C/C++类似的简洁地创建和使用二维数组.这里总结了创建二维数组的两种方法以及数组的访问方式 ...
- maven笔记(3)
项目管理利器(Maven)——Pom.xml解析 <name>项目的描述名</name> <url>项目的地址</url> <descriptio ...
- [spring mvc]Hello World入门
1.新建项目 File->New->Other,选择Dynamic web project: 项目建好之后,目录结构如下: 2.WEB-INF/web.xml 中配置 dispatcher ...
- VS2013 VC++的.cpp文件调用CUDA的.cu文件中的函数
CUDA 8.0在函数的调用中方便的让人感动.以下是从网上学到的VC++的.cpp文件调用CUDA的.cu文件中的函数方法,和一般的VC++函数调用的方法基本没差别. 使用的CUDA版本为CUDA 8 ...
- centos7 配置 NFS mount挂载服务器
1. NFS服务端 安装NFS服务 yum install nfs_utils yum install rpcbind (系统默认已经有了,可查看下) 配置共享文件夹 1. 创建文件夹: mkd ...