都知道PCA可以做降维,那它为什么可以降维,究竟是怎么降维的呢?

1. 为什么我们要降维?

我们的样本数据好好的,为什么要去做降维,第一个要想清楚这个问题。

  • 也许你是要训练一个分类器,觉得当前特征维度的太高,想去除冗余的维度,选择有区分性的维度
  • 也许你是觉得维度太高,导致系统速度慢,存储开销大
  • 也许你是觉得数据里面有噪声,想去除噪声

总之很多原因导致我们要去做降维,但是有两个主要的因素,就是去除数据里的冗余和噪声。

2. PCA是怎么去做降维的,怎么去除冗余和噪声的?

PCA有一个假设,数据中越是有区分度的维度,他的方差越大,例如我们的信号本身。越是没有区分度的维度,方差越小能量越小,例如噪声;

另外,如果两个维度相关性很高,那么其中一个维度就是冗余的,对于学习分类器没有很大的帮助,例如一个大学生的成绩里面,他的线性代数的成绩,和他的矩阵分析的成绩这两个相关性就很高,分类器只需要其中的一个来判断这个学生是工科生还是文科生。

综合以上两点,我们降维之后的数据一定要每个维度的方差大,同时维度之间的相关性小。

如何描述方差和相关性,有一个东西可以同时描述他们两——协方差矩阵

协方差矩阵是一个方阵,i,j列表示样本的第 i 维和第 j 维之间的相关性 ( i = j 时描述的是第 i 维的方差)。

因此,理想的协方差矩阵的对角线应该是很大的值,而非对角线的位置都接近于0,这样才能保证方差大,相关性小呀!

如果当前样本的协方差矩阵已经是对角矩阵了,那我们就不用做PCA降维了,因为他们的特性已经很好了!很不幸,我们的数据通常都不是那么好,协方差矩阵不是理想的样子,很可能相关性很大。那么很明确,我们要做的就是使得降维之后的数据协方差矩阵是对角矩阵。

那么就要做矩阵对角化呗,什么方法可以得到对角矩阵,这个就是特征值分解,

A = P * B * P(T)    (1)

B就是对角化的矩阵,A是原协方差矩阵,而我们知道B对角线上都是特征值,P里面都是对应的特征向量。如果我们降维之后的协方差矩阵张成B这个样就好了!

说到这里,协方差矩阵的公式还没提呢。

C = S(T) * S / (m - 1); (2)

C是协方差矩阵, S是m * d的样本数据矩阵,代表我们有m个样本,每个样本的维度是d。

那么当前有

A = S(T) * S / (m - 1);(3)

我们想要的是

B = S’(T) * S’ / (m - 1);(4)

S’就是我们降维之后的样本数据。 我们把公式(1) A = P * B * P(T),变一个样子就是 P(T) * A * P = B; 结合式子(3),于是乎

B = P(T) * A * P = P(T) * S(T) * S * P / (m - 1) =  (SP)(T) * (SP) / (m - 1);再结合式子(4)

SP不就是我们想要的降维之后的数据S'吗?这里,如果把P中的特征向量去掉几个特征值低的,那么不仅选出了方差大的数据,还去除了冗余。因此,PCA就达到了目的了。

3. 总结

所以降维的公式也出来了, S’ = S * P,P是特征值大的维度对应的特征向量。

这是今天看完PCA之后的一点小总结,关于如何做特征值分解,今天也看了许久,感觉要补充的矩阵只是还是很有一些的。

贴一下http://mathfaculty.fullerton.edu/mathews/n2003/QRMethodMod.html 提到的用QR method来做特征值分解的伪代码。

QR Algorithm.  The pseudocode for the QR method is:

1.  i = 0  
        2.      
        3.  repeat  
        4.       Factor    
        5.            
        6.            i = i+1  
        7.  until convergence

迭代的方式用QR分解来求特征值。这都是题外话了!

总之,我们需要理解PCA为什么能用协方差矩阵做特征值分解来求解,为什么这样做降维的结果就是好的结果,认真理解了才能更有效地使用它 。

PCA revisit的更多相关文章

  1. 用scikit-learn学习主成分分析(PCA)

    在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 ...

  2. 主成分分析(PCA)原理总结

    主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...

  3. 机器学习基础与实践(三)----数据降维之PCA

    写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...

  4. 数据降维技术(1)—PCA的数据原理

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

  5. 深度学习笔记——PCA原理与数学推倒详解

    PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...

  6. PCA、ZCA白化

    白化是一种重要的预处理过程,其目的就是降低输入数据的冗余性,使得经过白化处理的输入数据具有如下性质:(i)特征之间相关性较低:(ii)所有特征具有相同的方差. 白化又分为PCA白化和ZCA白化,在数据 ...

  7. PCA 协方差矩阵特征向量的计算

    人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或 ...

  8. 【统计学习】主成分分析PCA(Princple Component Analysis)从原理到实现

    [引言]--PCA降维的作用 面对海量的.多维(可能有成百上千维)的数据,我们应该如何高效去除某些维度间相关的信息,保留对我们"有用"的信息,这是个问题. PCA给出了我们一种解决 ...

  9. 主成分分析 (PCA) 与其高维度下python实现(简单人脸识别)

    Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可 ...

随机推荐

  1. 【转】SAP 各种记账凭证的更改&冲销

    一:更改 1,已经过帐的 FB02. 过完帐的允许更改的地方有限,只有凭证抬头文本,参照,分配,文本,原因代码等 2,预制凭证的更改. FBV2. 预制凭证可以更改的地方很多,只有凭证编码+公司代码+ ...

  2. Java 实现文件复制的不同方法

    用不同的方法实现文件的复制 1. 通道 Channel,它是一个对象,可以通过它读取和写入数据.拿NIO与原来的I/O比较,通道就像是流.是对接操作系统底层和缓冲区的桥梁. 2. 性能比较 内存映射最 ...

  3. python基础:8.正则表达式

    1.概念 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑. re模块的常见方法: ...

  4. Ubuntu14.04安装Ruby2.2方法

    直接使用系统的sudo apt-get install ruby2.0安装后,ruby -v显示ruby的版本依然是ruby 1.9. 以下方法可以顺序地在Ubuntu14.04安装Ruby2.2 s ...

  5. Struts2基础-3 -继承ActionSupport接口创建Action控制器+javaBean接收请求参数+ 默认Action配置处理请求错误 + 使用ActionContext访问ServletAPI

    1.目录结构及导入的jar包 2.web.xml 配置 <?xml version="1.0" encoding="UTF-8"?> <web ...

  6. orcale获取表、字段信息

    获取表字段: select * from user_tab_columns where Table_Name='用户表' order by column_name 获取表注释: select * fr ...

  7. [CF1161F]Zigzag Game

    通过这道模板题学了一种新的模型,记录一下. 稳定婚姻匹配 至于这道题,显然是一个二分图博弈的模型.考虑选择Bob,我们要找一组匹配使得任何情况下Bob都有匹配边能走.不失一般性假设Alice选择了in ...

  8. spring boot 尚桂谷学习笔记11 数据访问03 JPA

    整合JPA SpringData 程序数据交互结构图 (springdata jpa 默认使用 hibernate 进行封装) 使用之后就关注于 SpringData 不用再花多经历关注具体各个交互框 ...

  9. selenuim,webdriver 基础3

    代码要多敲 注释要清晰 哪怕很简单 对基础1和2 的补充 可以结合1和2来学习 from selenium import webdriver #生成浏览器对象 driver = webdriver.P ...

  10. TypeError: write() argument must be str, not bytes报错

    TypeError: write() argument must be str, not bytes 之前文件打开的语句是: with open('C:/result.pk','w') as fp: ...