题目链接

戳我

\(Solution\)

首先,这个直接推式子。自己推去

所以我们来想一想一些巧妙的方法

\(|S|\sum w_i\) 可以转化为:划分好集合后,每个点都对当前点有\(w_i\)的贡献

那么我们只要枚举每一个数\(j\)对\(i\)的贡献即可

当\(i=j\)时 贡献为:$$\begin{Bmatrix} n \ k \end {Bmatrix}$$

当\(i \neq j\)时 贡献为:$$\begin{Bmatrix} n-1 \ k \end {Bmatrix}$$

所以总贡献为:

\[\begin{Bmatrix} n \\ k \end {Bmatrix}+\begin{Bmatrix} n-1 \\ k \end {Bmatrix}
\]

斯特林数用这个算:

\[\begin{Bmatrix} n \\ m \end {Bmatrix}=\frac{1}{m!}\sum_{i=0}^{m}(-1)^i\binom m i(m-i)^n
\]

\(Code\)

#include<bits/stdc++.h>
#define int long long
#define rg register
#define file(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
const int mod=1e9+7;
int read(){
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
} int ksm(int a,int b){
int ans=1;
while(b){
if(b&1) ans=ans*a%mod;
a=a*a%mod,b>>=1;
}
return ans;
}
int jc[1000001];
int S(int x,int y){
int ans=0;
for(int i=0;i<=y;i++)
ans=(ans+(i&1?mod-1:1)*jc[y]%mod*ksm(jc[i],mod-2)%mod*ksm(jc[y-i],mod-2)%mod*ksm(y-i,x)%mod)%mod;
return ans*ksm(jc[y],mod-2)%mod;
}
main(){
int n=read(),k=read(),ans=0;
jc[0]=1;
for(int i=1;i<=n;i++)
ans=(ans+read())%mod,jc[i]=jc[i-1]*i%mod;
printf("%lld",(ans*(S(n,k)+S(n-1,k)*(n-1)%mod)%mod)%mod);
return 0;
}

「CF 961G」Partitions的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. 「CF 600E」 Lomsat gelral

    题目链接 戳我 \(Describe\) 给出一棵树,每个节点有一个颜色,求每个节点的子树中颜色数目最多的颜色的和. \(Solution\) 这道题为什么好多人都写的是启发式合并,表示我不会啊. 这 ...

  3. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  4. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  5. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  6. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  7. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  8. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  9. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

随机推荐

  1. 从入门到自闭之Python递归

    递归:不断地调用自身,用函数实现 死递归(死循环): def func(): print(1) func() func() 知识点:官方说明最大深度1000,但实际执行998或997以下,看电脑性能 ...

  2. 使用parquet-hadoop.jar包解析hive parquet文件时,遇到FIXED_LEN_BYTE_ARRAY转换为Decimal 以及 INT96转换为timestamp问题

    在使用parquet-hadoop.jar包解析parquet文件时,遇到decimal类型的数据为乱码,具体解决方法如下: 使用parquet-Hadoop.jar解析httpfs服务提供的parq ...

  3. GridView中点击某行的任意位置就选中该行

    GridView中点击某行的任意位置就选中该行 -- :: 分类: 第一步:添加选择列 点击GridView右边小尖头,双击CommandField,选中"选择",添加,将起设置为不可见: 第二步:处 ...

  4. JS基础_数据类型-Boolean类型

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. 一头扎进 JAVA

    硅不可 吉米 JAVA 基础 -- 基础不牢,地动山摇 子类应该比 父类更为 开放 (public protected default private) 子类方法不能比父类抛出更高异常( 可以为父类方 ...

  6. 像@Transactional一样利用注解自定义aop切片

    在spring中,利用@Transactional注解可以很轻松的利用aop技术进行事物管理.在实际项目中,直接利用自定义注解实现切片可以大大的提高我们的编码效率以及代码的简洁性. 实现以上的目标,主 ...

  7. cassandra分页

    在cassandra的协议中,没有具体规定查询结果的行数限制.但是对于大的数据集,依然有结果分页的必要.过大的结果集会爆掉服务端或者客户端的内存. 传统的分页方法采用了一点trick,采用了token ...

  8. tomcat性能优化,内存优化和并发线程连接优化

    今天被一同事问到tomcat和内存优化的问题,而网上的资料基本都是来回copy,所以抽时间随便写点.文章中设置的参数都是一个随便写的,具体的还要根据自己的情况来定. 1.内存优化: 说到tomcat不 ...

  9. 配置好ssh互信还需要密码登录

    通过ssh-keygen生成公私钥之后,再使用 ssh-copy-id将公钥传送到远程用户.这两步完成后,验证是否能等免密登录,发现并不能. 问题排查: 1..ssh 目录的权限应为 700 auth ...

  10. django优化--ORM优缺点

    谈Django绕不开ORM ORM : ORM概念,ORM特点,ORM 的优点,ORM 的缺点 orm : 对象关系映射 (Object Relational Mapping) ,用于实现面向对象编程 ...