loj 2778「BalticOI 2018」基因工程
这题和NOI那道向量内积一个套路
首先考虑求两行的不同元素个数,可以转化成一个行向量\(a\)和列向量\(b\)相乘得到一个值.如果只有\(A,C\)两种字符,那么令对应权值\(A=1,C=-1\),然后这两行的不同元素个数可以表示成\(\frac{m-ab}{2}\),拓展到四个字符的情况,那么就搞三种形式,分别为\(A=C=1,G=T=-1|A=1,C=-1,G=T=0|A=C=0,G=1,T=-1\),记对应的行向量为\(a1,a2,a3\),列向量为\(b1,b2,b3\),那么他们的不同元素个数应该是\(\frac{3m-(a1b1+2a2b2+2a3b3)}{4}\)
如果每次暴力比较,复杂度也就是跟普通暴力一样的.所以考虑把所有行的行向量加起来,然后乘上要比较的那一行的列向量,如果这一行是答案要求的,那么得到的值应该是\((n-1)k\).不过如果得到的结果是\((n-1)k\),这一行有可能并不是答案.为了避免这种情况,不妨给每一行随机一个权值\(w_i\),使得任何一行和这一行匹配得出的值要乘以\(w_i\),那么答案行\(ans\)的列向量乘以行向量之和的结果就应该是\(\sum_{i\neq ans} w_i k\).这样枚举每一行,然后用对应列向量乘行向量之和check就行了
细节看代码吧实在是懒得写了
loj 2778「BalticOI 2018」基因工程的更多相关文章
- LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)
题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...
- LOJ#2351. 「JOI 2018 Final」毒蛇越狱
LOJ#2351. 「JOI 2018 Final」毒蛇越狱 https://loj.ac/problem/2351 分析: 首先有\(2^{|?|}\)的暴力非常好做. 观察到\(min(|1|,| ...
- Loj #2495. 「AHOI / HNOI2018」转盘
Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1 ...
- Loj #2494. 「AHOI / HNOI2018」寻宝游戏
Loj #2494. 「AHOI / HNOI2018」寻宝游戏 题目描述 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得 ...
随机推荐
- sqli-labs(40)
0X01同样是构造闭合 这里的闭合条件是') 构造语句 ?id=');insert into users values(100,'tx','tx')%23 在客户端mysql里面看看 嘿嘿 成功执行 ...
- 2018-2019-2 网络对抗技术 20165232 Exp7 网络欺诈防范
2018-2019-2 网络对抗技术 20165232 Exp7 网络欺诈防范 原理与实践说明 1.实践目标 理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法. 2.实践内容概述 简单应 ...
- LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)
题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是 ...
- web安全之如何防止CSRF跨站请求伪造(转载)
https://www.cnblogs.com/blibli/p/7658168.html CSRF(Cross-site request forgery)跨站请求伪造,也被称为“One Click ...
- Android中@id与@+id区别和sharedUserId属性详解
Android中的组件需要用一个int类型的值来表示,这个值也就是组件标签中的id属性值. id属性只能接受资源类型的值,也就是必须以@开头的值,例如,@id/abc.@+id/xyz等. 如果在@后 ...
- C++类继承方式及实践
直接上图: 以及: 实践如下: #include <iostream> using namespace std; class Father{ private: int father1; i ...
- Checkbox 多选框
Checkbox 多选框 一组备选项中进行多选 ¶基础用法 单独使用可以表示两种状态之间的切换,写在标签中的内容为 checkbox 按钮后的介绍. 在el-checkbox元素中定义v-model绑 ...
- vim技巧1
在编辑模式或可视模式下输入的命令会另外注明.1. 查找 /xxx(?xxx) 表示在整篇文档中搜索匹配xxx的字符串, / 表示向下查找, ? 表示 ...
- jdbc 对sqlite的基本操作
1.向数据库中创建表 public void addTable( String dbpath) { //创建表单的sql语句 String createtablesql= " CREATE ...
- hibernate 事务处理
Hibernate的事务处理:事务:* 事务就是逻辑上的一组操作,要么全都成功,要么全都失败!!! 事务特性:* 原子性:事务一组操作不可分割.* 一致性:事务的执行前后,数据完整性要保持一致.* 隔 ...