C. Alice and Bob

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

It is so boring in the summer holiday, isn't it? So Alice and Bob have invented a new game to play. The rules are as follows. First, they get a set of n distinct integers. And then they take turns to make the following moves. During each move, either Alice or Bob (the player whose turn is the current) can choose two distinct integers x and y from the set, such that the set doesn't contain their absolute difference |x - y|. Then this player adds integer |x - y| to the set (so, the size of the set increases by one).

If the current player has no valid move, he (or she) loses the game. The question is who will finally win the game if both players play optimally. Remember that Alice always moves first.

Input

The first line contains an integer n (2 ≤ n ≤ 100) — the initial number of elements in the set. The second line contains n distinct space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the set.

Output

Print a single line with the winner's name. If Alice wins print "Alice", otherwise print "Bob" (without quotes).

大意:

n(n<=100)个正数,每次从中取任意两个数,他们的差值如果在集合中没有就加入集合中,问最后集合中元素个数的奇偶性?

思路:

快被自己蠢哭了。。。。竟然把题目读成了取出两个数,然后放回去。。。。。

首先,要明白一点,最终谁获胜,需要确定还缺几个数(还能够生成多少数)

  • 首先考虑只有两个数的情况,发现两个数x,y(x>y),可以观察到连续执行操作,可以生成的数的集合是

    {k∗gcd(x,y) | k=1,2,..且 k∗gcd(x,y)<=y}

  • 然后考虑有第三个数Z的情况,因为前面的两个数,极其生成的所有数的最大公约数都是gcd(x, y),
    所以加入第三个数之后这个集合的新的最大公约数是gcd(gcd(x,y),Z),然后生成集合是以这个最大公约数的倍数来生成.
  • ……..
  • 归纳到n个数,就是以最大的数为上界,所有n个数的最大公约数来填充的集合,元素个数为:

    max{xi | 1<=i<=n}gcd{x1,x2,...xn}

  • 代码:

    #include<bits/stdc++.h>
    using namespace std;
    const int MAXN=130;
    int a[MAXN];
    int gcd(int x,int y)
    {
    if(y==0) return x;
    return gcd(y,x%y);
    }
    int main()
    {
    int n;
    cin>>n;
    int m=-1;
    for(int i=0;i<n;i++){
    cin>>a[i];
    m=max(m,a[i]);
    }
    sort(a,a+n);
    int res=gcd(a[n-1],a[n-2]);
    for(int i=n-3;i>=0;i--){
    res=gcd(max(res,a[i]),min(res,a[i]));
    if(res==1) break;
    }
    int total=m/res-n;
    if(total%2) cout<<"Alice"<<endl;
    else cout<<"Bob"<<endl;
    }

    Codeforces Round #201.C-Alice and Bob的更多相关文章

    1. Educational Codeforces Round 9 B. Alice, Bob, Two Teams 前缀和

      B. Alice, Bob, Two Teams 题目连接: http://www.codeforces.com/contest/632/problem/B Description Alice and ...

    2. Codeforces Round #201 (Div. 2)C,E

      数论: C. Alice and Bob time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

    3. Codeforces Round #201 (Div. 2) - C. Alice and Bob

      题目链接:http://codeforces.com/contest/347/problem/C 题意是给你一个数n,然后n个数,这些数互不相同.每次可以取两个数x和y,然后可以得到|x - y|这个 ...

    4. codeforce Codeforces Round #201 (Div. 2)

      cf 上的一道好题:  首先发现能生成所有数字-N 判断奇偶 就行了,但想不出来,如何生成所有数字,解题报告 说是  所有数字的中最大的那个数/所有数字的最小公倍数,好像有道理:纪念纪念: #incl ...

    5. codeforces round #201 Div2 A. Difference Row

      #include <iostream> #include <vector> #include <algorithm> using namespace std; in ...

    6. Codeforces Round#201(div1) D. Lucky Common Subsequence

      题意:给定两个串,求出两个串的最长公共子序列,要求该公共子序列不包含virus串. 用dp+kmp实现 dp[i][j][k]表示以i结尾的字符串和以j结尾的字符串的公共子序列的长度(其中k表示该公共 ...

    7. Codeforces Round #201 (Div. 2). E--Number Transformation II(贪心)

      Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Description You ar ...

    8. 数学--数论--Alice and Bob (CodeForces - 346A )推导

      It is so boring in the summer holiday, isn't it? So Alice and Bob have invented a new game to play. ...

    9. Codeforces Round #557 (Div. 1) 简要题解

      Codeforces Round #557 (Div. 1) 简要题解 codeforces A. Hide and Seek 枚举起始位置\(a\),如果\(a\)未在序列中出现,则对答案有\(2\ ...

    随机推荐

    1. P4942小凯的数字

      给定一个序列,如12345 56789 1011121314等,输出对其取余9的结果. 那么我们需要明白一个定理,一个序列对一个数的取余结果等于它各位之和取余那个数的结果.证明似乎是这样∑i=0n​a ...

    2. react生态常用库分类

      一. web项目 1.脚手架 create-react-app 自动安装react.react-dom 2.核心 react.react-dom 3.路由 react-router.react-rou ...

    3. Ansible 常用模块详解

      经过前面的介绍,我们已经熟悉了 Ansible 的一些常识性的东西和如何编译安装Ansible,从本章开始我们将全面介绍 Ansible 的各种生产常用模块,这些也是我们使用 Ansible 的过程中 ...

    4. 基础数据类型之集合和深浅copy,还有一些数据类型补充

      集合 集合是无序的,不重复的数据集合,它里面的元素是可哈希的(不可变类型),但是集合本身是不可哈希(所以集合做不了字典的键)的.以下是集合最重要的两点: 去重,把一个列表变成集合,就自动去重了. 关系 ...

    5. js小数和百分数的转换

      一.百分数转化为小数 function toPoint(percent){ var str=percent.replace("%",""); str= str/ ...

    6. hive报错java.sql.SQLException: null, message from server: "Host '192.168.126.100' is not allowed to connect to this MySQL server"

    7. nginx入门,安装

      Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.其特点是占有内存少,并发能力强,事实上nginx的并发能力确实在 ...

    8. React源码深度解析视频 某课网(完整版)

      <ignore_js_op> [课程介绍]:        React毫无疑问是前端界主流的框架,而框架本身就是热点.课程以讲解React实现原理为主,并在实现过程中讲解这么做的原因,带来 ...

    9. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

      目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

    10. mysql alter 语句用法,添加、修改、删除字段、索引、主键等

      修改表名: ALTER  TABLE admin_user RENAME TO a_use //增加主键 [sql] view plaincopy alter table tabelname add  ...