Problem Description
You may heard of the Joseph Problem, the story comes from a Jewish historian living in 1st century. He and his 40 comrade soldiers were trapped in a cave, the exit of which was blocked by Romans.
They chose suicide over capture and decided that they would form a circle and start killing themselves using a step of three.
Josephus states that by luck or maybe by the hand of God, he and another man remained the last and gave up to the Romans.
Now the problem is much easier: we have N men stand in a line and labeled from 1 to N, for each round, we choose the first man, the k+1-th one, the 2*k+1-th one and so on, until the end of the line.
These poor guys will be kicked out of the line and we will execute them immediately (may be head chop, or just shoot them, whatever), and then we start the next round with the remaining guys.
The little difference between the Romans and us is, in our version of story, NO ONE SURVIVES. Your goal is to find out the death sequence of the man.
For example, we have N = 7 prisoners, and we decided to kill every k=2 people in the line. At the beginning, the line looks like this:
1 2 3 4 5 6 7
after the first round, 1 3 5 7 will be executed, we have
2 4 6
and then, we will kill 2 6 in the second round. At last 4 will be executed. So, you need to output 1 3 5 7 2 6 4. Easy, right?
But the output maybe too large, we will give you Q queries, each one contains a number m, you need to tell me the m-th number in the death sequence.
 Input
Multiple cases. The first line contains a number T, means the number of test case.
For every case, there will be three integers N (1<=N<=3000000), K(1<=K), and Q(1<=Q<=1000000), which indicate the number of prisoners, the step length of killing,
and the number of query. Next Q lines, each line contains one number m(1<=m<=n).
 Output
For each query m, output the m-th number in the death sequence.
Sample Input
1 7 2 7 1 2 3 4 5 6 7
 
将约瑟夫环拉成一条直线,一开始一共n个人,每次从第一个人开始(杀掉第一个)从前向后依次每隔k个人杀一个人,最后大家都被干掉了,然后就形成了一个死亡序列
有m次询问,问你在死亡序列中的第x个人编号是多少.
 
思路:
如果我们把他们的下标从0开始,那么第一批死的人下标肯定满足i%k==0
继续想,杀掉一批人以后活着的人会向前补空位,加上第i个人在这轮没有被杀,那么他下轮的位置就会在i-i/k-1.
换句话说第i个人会比第i-i/k-1多活一轮
然后我们发现我们花O(n)的时间就能递推出每个人是在第几轮的第几个死的.
我们开一个pair 保存每个人是 第几轮 和第几个
我们再对轮数取个前缀和.就能知道他在总队列里面是第几个了
一开始想到补空位的想法了,但是没有深想,利用递推的思路,其实在线性时间内就可以求出答案了
代码如下:
 #include <bits/stdc++.h>

 using namespace std;
const int maxn=3e6+;
int cnt[maxn];
int ans[maxn];//最后的答案
int n,k,q;
pair<int,int> dp[maxn];
int main()
{
//freopen("de.txt","r",stdin);
int t;
scanf("%d",&t);
while (t--){
scanf("%d%d%d",&n,&k,&q);
memset(cnt,,sizeof cnt);
for (int i=;i<n;++i){
dp[i].first=i%k?(dp[i-i/k-].first+):;
dp[i].second=cnt[dp[i].first]++;//求出来第i人的轮数,相应轮数cnt++
}
for (int i=;i<maxn;++i){
if (cnt[i]==)
break;
cnt[i]+=cnt[i-];//处理前缀和,即第i轮之前一共杀死多少人
}
for (int i=;i<n;++i){
ans[(dp[i].first?cnt[dp[i].first-]:)+dp[i].second]=i;
}
for (int i=;i<q;++i){
int x;
scanf("%d",&x);
printf("%d\n",ans[x-]+);
}
}
return ;
}

hdu 5860 Death Sequence(递推+脑洞)的更多相关文章

  1. HDU 5860 Death Sequence(递推)

    HDU 5860 Death Sequence(递推) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5860 Description You ...

  2. HDU 5860 Death Sequence(死亡序列)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  3. HDU 5950 Recursive sequence 递推转矩阵

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  4. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  5. 2016 Multi-University Training Contest 10 || hdu 5860 Death Sequence(递推+单线约瑟夫问题)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5860 题目大意:给你n个人排成一列编号,每次杀第一个人第i×k+1个人一直杀到没的杀.然后 ...

  6. HDU 5860 Death Sequence

    用线段树可以算出序列.然后o(1)询问. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<c ...

  7. HDU 2085 核反应堆 --- 简单递推

    HDU 2085 核反应堆 /* HDU 2085 核反应堆 --- 简单递推 */ #include <cstdio> ; long long a[N], b[N]; //a表示高能质点 ...

  8. hdu-5496 Beauty of Sequence(递推)

    题目链接: Beauty of Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java ...

  9. hdu 2604 Queuing(dp递推)

    昨晚搞的第二道矩阵快速幂,一开始我还想直接套个矩阵上去(原谅哥模板题做多了),后来看清楚题意后觉得有点像之前做的数位dp的水题,于是就用数位dp的方法去分析,推了好一会总算推出它的递推关系式了(还是菜 ...

随机推荐

  1. 为你的AliOS Things应用增加自定义cli命令

    摘要: 怎么才能在RTOS系统中,通过 串口shell控制LED的开关. 在日常嵌入式开发中,我们经常会用串口命令来使设备进入某种特定的状态,或执行某个特定的操作.如系统自检,模拟运行,或者进入手动模 ...

  2. 【BZOJ1396】识别子串(后缀自动机,线段树)

    题意: 一行,一个由小写字母组成的字符串S,长度不超过10^5 思路:论文题 设p为自动机上的合法结点,r为右端点,len=st[fa[p]]]+1 位置[r-st[p]+1,r-len+1]与r-i ...

  3. paper 149:Deep Learning 学习笔记(一)

     1. 直接上手篇 台湾李宏毅教授写的,<1天搞懂深度学习> slideshare的链接: http://www.slideshare.net/tw_dsconf/ss-62245351? ...

  4. truncate与delete删除数据的区别

  5. vue项目git

    https://github.com/renrenio/renren-fast-vue https://github.com/hzlshen/vue-project

  6. css 图片 和 文本 的处理

    图片 1.css3已经可以实现 img标签 和 img内图片分开处理的功能了.类似标签的背景图.   https://www.zhangxinxu.com/wordpress/2015/03/css3 ...

  7. [CSP-S模拟测试]:喝喝喝(模拟)

    题目描述 奥利维尔和雪拉扎德在喝酒.两人连喝$18$瓶后,奥利维尔最终倒下了.奥利维尔服用了教会研究的醒酒药后,因为服用了太多产生了副作用,第二天睡不着了.他只好用数数的方式度过无聊的时光,不过他毕竟 ...

  8. leetcode-解题记录 1108. IP 地址无效化

    题目: 给你一个有效的 IPv4 地址 address,返回这个 IP 地址的无效化版本. 所谓无效化 IP 地址,其实就是用 "[.]" 代替了每个 ".". ...

  9. Oracle基础数据类型与运算符

    Oracle基础数据类型: 1. 字符型:字符串 char(最大2000), nchar(最大1000, 支持                           Unicode)--->固定长 ...

  10. 为什么学python

    一.什么是Python Python [1](英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum发明. ...