【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了)
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” – 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, …, WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
Sample Input
3 2
1 1 2
Sample Output
11
11
21
HINT
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。
如果不减去某个物品,那么这问题就很经(jian)典(dan)了。
当然,我们知道总方案数减去用i物品的方案数就是答案了。
如何求得用i物品的方案数呢?即为count(i, j-w[i])
所以count(i, j)=f( j )-count(i, j-w[i])
然后还考验一个分析能力:这个总方案数是要爆long long 的,所以要膜(不然他让你只输出末尾数字干嘛)
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2000+5;
int n,m,w[N],f[N],c[N][N];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&w[i]);
f[0]=1;
for(int i=1;i<=n;i++){
for(int j=m;j>=w[i];j--){
f[j]+=f[j-w[i]];
f[j]%=10;
}
}
for(int i=1;i<=n;i++){
c[i][0]=1;
for(int j=1;j<=m;j++){
if(j<w[i]) c[i][j]=f[j];
else c[i][j]=(f[j]-c[i][j-w[i]]+10)%10;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d",c[i][j]%10);
}
printf("\n");
}
return 0;
}
【bozj2287】【[POJ Challenge]消失之物】维护多值递推的更多相关文章
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...
- poj 2229 【完全背包dp】【递推dp】
poj 2229 Sumsets Time Limit: 2000MS Memory Limit: 200000K Total Submissions: 21281 Accepted: 828 ...
- POJ 3734 Blocks(矩阵快速幂+矩阵递推式)
题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 . 设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...
- BZOJ2287: 【POJ Challenge】消失之物
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 254 Solved: 140[Submit][S ...
随机推荐
- 操作系统(3)实验相关原理——bootloader启动uCore
x86启动顺序 CS+EIP决定启动地址. CS部分后面又4个0,相当于是左移了4位.总之就是要让CS左移4位之后加上EIP来得到要跳转的地址. 0x7c00地方开始的512字节的内容就是bootlo ...
- Web高效管理多个项目的SVN仓库
转至:https://www.jianshu.com/p/a0af00642585 采用方案 Linux+Apache+Subversion+MySQL+JDK+Tomcat+Svnadmin 目录 ...
- 14.使用Crunch创建字典----Armitage扫描和利用----设置虚拟渗透测试实验室----proxychains最大匿名
使用Crunch创建字典 kali自带的字典 usr/share/wordlists cd Desktop mkdir wordlists cd wordlists/ crunch --help cr ...
- python+selenium模拟键盘输入
from selenium.webdriver.common.keys import Keys #键盘导入类 --------------------------------------------- ...
- (ROT-13解密)Flare-On4: Challenge1 login.html
说是FlareOn的逆向 倒不如说是crypto....... 题目不难 F12看源码: document.getElementById("prompt").onclick = f ...
- P1182 数列分段`Section II` 二分
https://www.luogu.org/problemnew/show/P1182 做了这个题才知道二分的强大 这个题可以假设我们有n个果子 m个容器 要能把果子全装进去 那么容器最小可以是多小 ...
- DateHandler日期处理工具(JSP中使用后台工具类)
1.DateHandler.java package Utils.dateHandler; import java.text.ParseException; import java.text.Simp ...
- [Codeforces 1239D]Catowise City(2-SAT)
[Codeforces 1239D]Catowise City(2-SAT) 题面 有n个主人,每个主人都有一只猫.每个主人认识一些猫(包括自己的猫).现在要选出一些人和一些猫,个数均大于0且总共为n ...
- [51Nod1623] 完美消除
link $solution:$ 首先我们可以发现一个结论,对于一个数 $x$ ,它的最低修改次数为它每位与前去中是否都比此位上的数大,有则答案 $-1$ .因为若有小数则没有办法将其答案贡献变低. ...
- 网络爬虫之HTTPClient
HTTPClient官网:http://hc.apache.org/httpcomponents-client-4.5.x/quickstart.html 问题一:明明浏览器请求有数据,可使用HTTP ...