【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了)
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” – 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, …, WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
Sample Input
3 2
1 1 2
Sample Output
11
11
21
HINT
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。
如果不减去某个物品,那么这问题就很经(jian)典(dan)了。
当然,我们知道总方案数减去用i物品的方案数就是答案了。
如何求得用i物品的方案数呢?即为count(i, j-w[i])
所以count(i, j)=f( j )-count(i, j-w[i])
然后还考验一个分析能力:这个总方案数是要爆long long 的,所以要膜(不然他让你只输出末尾数字干嘛)
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2000+5;
int n,m,w[N],f[N],c[N][N];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&w[i]);
f[0]=1;
for(int i=1;i<=n;i++){
for(int j=m;j>=w[i];j--){
f[j]+=f[j-w[i]];
f[j]%=10;
}
}
for(int i=1;i<=n;i++){
c[i][0]=1;
for(int j=1;j<=m;j++){
if(j<w[i]) c[i][j]=f[j];
else c[i][j]=(f[j]-c[i][j-w[i]]+10)%10;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d",c[i][j]%10);
}
printf("\n");
}
return 0;
}
【bozj2287】【[POJ Challenge]消失之物】维护多值递推的更多相关文章
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...
- poj 2229 【完全背包dp】【递推dp】
poj 2229 Sumsets Time Limit: 2000MS Memory Limit: 200000K Total Submissions: 21281 Accepted: 828 ...
- POJ 3734 Blocks(矩阵快速幂+矩阵递推式)
题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 . 设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...
- BZOJ2287: 【POJ Challenge】消失之物
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 254 Solved: 140[Submit][S ...
随机推荐
- Html5 Canvas斗地主游戏
过完年来公司,没什么事,主管说研究下html5 游戏,然后主管就给了一个斗地主的demo,随后我就开始看代码, 现在我看了html5以及canvas相关知识和斗地主的demo后,自己用demo上的素材 ...
- 浅谈vue学习之组件通信
vue用组件化简化了我们编写代码的复杂度,组件之间经常会出现数据传递的情况,那么组件之间是怎样通信的呢? 使用props传递数据 组件实例的作用域是孤立的.这意味着不能 (也不应该) 在子组件的模板内 ...
- ThinkPHP目录下面php文件 Access denied. 的问题
对于这种拒绝访问的报错,从我遇到过的问题总结来讲,可以从几个方向入手: 1. 文件权限. 最容易想到的也是这个 使用命令chmod -R 777 目录名 2. 环境配置. 这个我也是有遇到过的 ...
- java虚拟机学习总结之GC回收算法与GC收集器
GC回收算法 1.标记清除算法分为标记阶段和清除阶段标记阶段:通过特定的判断方式找出无用的对象实例并将其标记清除阶段:将已标记的对象所占用的内存回收缺点:运行多次以后容易产生空间碎片,当需要一整段连续 ...
- Springcloud 2.x 版本 分布式配置中心
一.什么是分布式配置中心? 就是为微服务架构中的微服务提供集中化的外部配置支持,配置中心为各个微服务应用的所有环境提供了中心化的外部配置(可能比较难理解,想知道是什么意思就要知道为什么这么配置:这么配 ...
- HDU4471 Homework
题目 预处理转移矩阵的\(2^k\). 然后把关键点按下标排序. 每次用类似于矩阵快速幂的方法求出两个关键点中间的转移矩阵. #include<bits/stdc++.h> using n ...
- 08: mysql主从原理
1.1 mysql主从同步 参考博客:https://www.cnblogs.com/kevingrace/p/6256603.html 1.mysql主从同步(复制)概念 1. 将Mysql某一 ...
- kmeans 聚类 k 值优化
kmeans 中k值一直是个令人头疼的问题,这里提出几种优化策略. 手肘法 核心思想 1. 肉眼评价聚类好坏是看每类样本是否紧凑,称之为聚合程度: 2. 类别数越大,样本划分越精细,聚合程度越高,当类 ...
- HDU-1018 BigNumber
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- TMS320F28335——下载程序到flash中
一.让CCS软件支持Flash烧写 添加F28335.cmd文件 如图屏蔽掉25335_RAM_lnk.cmd 2.支持从Flash中拷贝文件到RAM中 添加DSP2832x_MemCopy.c 在主 ...