Spark MLlib机器学习(一)——决策树
决策树模型,适用于分类、回归。
简单地理解决策树呢,就是通过不断地设置新的条件标准对当前的数据进行划分,最后以实现把原始的杂乱的所有数据分类。
就像下面这个图,如果输入是一大堆追求一个妹子的汉子,妹子内心里有个筛子,最后菇凉也就决定了和谁约(举栗而已哦,不代表什么~大家理解原理重要~~)
训练数据:
0,32 帅 收入中等 不是公务员
1,25 帅 收入中等 是公务员
0,25 帅 收入中等 不是公务员
1,29 帅 收入中等 是公务员
1,24 帅 收入高 不是公务员
0,31 帅 收入高 不是公务员
0,35 帅 收入中等 是公务员
0,30 不帅 收入中等 不是公务员
0,31 帅 收入高 不是公务员
1,30 帅 收入中等 是公务员
1,21 帅 收入高 不是公务员
0,21 帅 收入中等 不是公务员
1,21 帅 收入中等 是公务员
0,29 不帅 收入中等 是公务员
0,29 帅 收入底 是公务员
0,29 不帅 收入底 是公务员
1,30 帅 收入高 不是公务员
测试数据:
0,32 帅 收入中等 不是公务员
1,27 帅 收入高 是公务员
1,29 帅 收入高 不是公务员
1,25 帅 收入中等 是公务员
0,23 不帅 收入中等 是公务员
代码实现:
package com.test;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.mllib.feature.HashingTF;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.tree.DecisionTree;
import org.apache.spark.mllib.tree.model.DecisionTreeModel;
import org.apache.spark.sql.SparkSession;
import scala.Tuple2;
public class DecisionTreeTest2 {
public static void main(String[] args) {
//SparkConf conf = new SparkConf().setMaster("local").setAppName("DecisionTreeTest").config("spark.sql.warehouse.dir","file:///D://test").getOrCreate() ;
SparkSession spark = SparkSession.builder().master("local[5]")
.appName("DecisionTreeTest")
.config("spark.sql.warehouse.dir", "/user/hive/warehouse/").enableHiveSupport()
.getOrCreate();
JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());
JavaRDD<String> lines = jsc.textFile("C://tree3.txt");
final HashingTF tf = new HashingTF(10000);
JavaRDD<LabeledPoint> transdata = lines.map(new Function<String, LabeledPoint>() {
private static final long serialVersionUID = 1L;
@Override
public LabeledPoint call(String str) throws Exception {
String[] t1 = str.split(",");
String[] t2 = t1[1].split(" ");
LabeledPoint lab = new LabeledPoint(Double.parseDouble(t1[0]),tf.transform(Arrays.asList(t2)));
return lab;
}
});
// 设置决策树参数,训练模型
Integer numClasses = 3;
Map<Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
String impurity = "gini";
Integer maxDepth = 5;
Integer maxBins = 32;
final DecisionTreeModel tree_model = DecisionTree.trainClassifier(transdata, numClasses,
categoricalFeaturesInfo, impurity, maxDepth, maxBins);
System.out.println("决策树模型:");
System.out.println(tree_model.toDebugString());
// 保存模型
tree_model.save(jsc.sc(), "C://DecisionTreeModel");
// 未处理数据,带入模型处理
JavaRDD<String> testLines = jsc.textFile("C://tree4.txt");
JavaPairRDD<String, String> res = testLines.mapToPair(new PairFunction<String, String, String>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, String> call(String line) throws Exception {
String[] t2 = line.split(",")[1].split(" ");
Vector v = tf.transform(Arrays.asList(t2));
double res = tree_model.predict(v);
return new Tuple2<String, String>(line, Double.toString(res));
}
}).cache();
// 打印结果
res.foreach(new VoidFunction<Tuple2<String, String>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, String> a) throws Exception {
System.out.println(a._1 + " : " + a._2);
}
});
// 将结果保存在本地
res.saveAsTextFile("C://res");
}
}
测试结果:
0,32 帅 收入中等 不是公务员 : 0.0
1,27 帅 收入高 是公务员 : 1.0
1,29 帅 收入高 不是公务员 : 1.0
1,25 帅 收入中等 是公务员 : 1.0
0,23 不帅 收入中等 是公务员 : 0.0
Spark MLlib机器学习(一)——决策树的更多相关文章
- Spark MLlib 机器学习
本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新 ...
- 《Spark MLlib机器学习实践》内容简介、目录
http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...
- Spark MLlib机器学习
前言 Spark MLlib是Spark对常用的机器学习算法的实现库,同时包括相关的测试和数据生成器.
- 《Spark MLlib 机器学习实战》1——读后总结
1 概念 2 安装 3 RDD RDD包含两种基本的类型:Transformation和Action.RDD的执行是延迟执行,只有Action算子才会触发任务的执行. 宽依赖和窄依赖用于切分任务,如果 ...
- Spark Mllib里如何采用保序回归做回归分析(图文详解)
不多说,直接上干货! 相比于决策树,保序回归的应用范围没有决策树算法那么广泛. 特别在数据处理较为庞大的时候,采用保序回归做回归分析,可以极大地节省资源,从而提高计算效率. 保序回归的思想,是对数据进 ...
- Spark Mllib里如何生成KMeans的训练样本数据、生成线性回归的训练样本数据、生成逻辑回归的训练样本数据和其他数据生成
不多说,直接上干货! 具体,见 Spark Mllib机器学习(算法.源码及实战详解)的第2章 Spark数据操作
- Spark Mllib里的卡方检验
不多说,直接上干货! import org.apache.spark.mllib.stat.Statistics 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mlli ...
- Spark Mllib里的分层抽样(使用map作为分层抽样的数据标记)
不多说,直接上干货! 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mllib数理统计
- Spark Mllib里的如何对单个数据集用斯皮尔曼计算相关系数
不多说,直接上干货! import org.apache.spark.mllib.stat.Statistics 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mlli ...
随机推荐
- CSS插入的四种方式
一.什么是CSS CSS(Cascading style sheets 层叠样式表),CSS可以用以为网页构建样式表,通过样式表来达到对网页进行美化的效果.所谓层叠可以将网页想象成一层层的结构,高层 ...
- tomcat 启动一傘而过问题
tomcat 启动一傘而过问题 D:\apache-tomcat-7.0.75\bin startup.bat打开记事本打开 第一行:设置启动环境变量JAVA_HOME,CATALINA_HOME S ...
- Bugku web web2
web2 打开后发现是个大滑稽啊!F12检查元素拿到flag
- Java——容器(泛型)
[泛型] 起因:JDK1.4之前类型不明确 <1>装入集合的类型都被当做Object对待,从而失去自己的实际类型. <2>从集合中取出时往往需要转型,效率低,且很容易出错 ...
- Python_018( isinstance,issubclass详解)
1.isinstance() 1)class A:pass class B:pass b = B() print(isinstance(b,B) #True #isinstance(obj,type ...
- 【PowerOJ1751&网络流24题】数字梯形问题(费用流)
题意: 思路: [问题分析] 求图的最大权不相交路径及其变种,用费用最大流解决. [建模方法] 规则(1) 把梯形中每个位置抽象为两个点<i.a>,<i.b>,建立附加源S汇T ...
- <知识整理>2019清北学堂提高储备D4
今天主要讲一下数学的知识. 一.进制转换: 十进制到k进制:短除法:顺除至0,逆序取余. k进制转十进制:乘权相加. 常见进制:四进制(对应2位二进制).八进制(对应3位二进制).十六进制(对应4位二 ...
- [spring cloud feign] [bug] 使用对象传输get请求参数
前言 最近在研究 srping cloud feign ,遇到了一个问题,就是当 get 请求 的参数使用对象接收时,就会进入熔断返回.经过百度,发现网上大部分的解决方案都是将请求参数封装到Reque ...
- IntelliJ IDEA 开发工具的一些设置
IntelliJ IDEA 开发工具的一些设置 参考资料 IntelliJ IDEA 的学习,离不开网络上技术热爱者们的分享,在此向他们表示感谢. 成吨提高开发效率:https://github.co ...
- CSS - 初始值、指定值、计算值、应用值、实际值
初始值:未提供指定值且未从父元素指定值继承的 CSS 属性的值. 指定值:通过直接声明或 CSS 属性的值. 计算值:通过需要计算得到的值,如,继承和相对的尺寸.(注意:有些计算要等到布局确定才能进行 ...