[NOI2007]社交网络

Description

在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。

在一个社交圈子里有n个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利,即这些结点对于s和t之间的联系有一定的重要程度。我们可以通过统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点A和B之间可能会有多条最短路径。我们修改重要程度的定义如下:令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s到t的最短路的数目;则定义

为结点v在社交网络中的重要程度。为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每一个结点的重要程度。

Input

输入第一行有两个整数n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号。接下来m行,每行用三个整数a,b,c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。n≤100;m≤4500,任意一条边的权值 c 是正整数,满足:1≤c≤1000。所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过 10^10

Output

输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

Sample Input

4 4

1 2 1

2 3 1

3 4 1

4 1 1

Sample Output

1.000

1.000

1.000

1.000

HINT

社交网络如下图所示。



对于 1 号结点而言,只有 2 号到 4 号结点和 4 号到 2 号结点的最短路经过 1 号结点,而 2 号结点和 4 号结点之间的最短路又有 2 条。因而根据定义,1 号结点的重要程度计算为 1/2 + 1/2 = 1 。由于图的对称性,其他三个结点的重要程度也都是 1 。

最短路+任意两点间最短路及其条数

这道题用\(Floyed\)比较方便,先处理出任意两个点之间的最短距离,同时记录两点间最短距离的条数。

\(a[i][j]\)表示从\(i\)走到\(j\)的最短路

\(sum[i][j]\)表示从\(i\)到\(j\)的最短路条数

if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j],sum[i][j]=sum[i][k]*sum[k][j];
else if(a[i][j]==a[i][k]+a[k][j])
sum[i][j]+=sum[i][k]*sum[k][j];

然后直接枚举\(s,t\),更新其他的点的答案。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#define lll long long
using namespace std;
lll read()
{
lll x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
const int N=110;
int n,m,qwe,x,y,z;
lll a[N][N],sum[N][N];
double ans[N];
int main()
{
n=read();m=read();memset(a,0x3f,sizeof(a));
for(int i=1;i<=m;i++)
{
x=read();y=read();z=read();
a[x][y]=a[y][x]=z;sum[x][y]=sum[y][x]=1;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
{
if(i==k) continue;
for(int j=1;j<=n;j++)
{
if(j==i||j==k) continue;
if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j],sum[i][j]=sum[i][k]*sum[k][j];
else if(a[i][j]==a[i][k]+a[k][j]) sum[i][j]+=sum[i][k]*sum[k][j];
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(i==j) continue;
for(int k=1;k<=n;k++)
{
if(k==i||k==j) continue;
if(a[i][k]+a[k][j]==a[i][j])
{
ans[k]+=sum[i][k]*sum[k][j]*1.000/sum[i][j];
}
}
}
for(int i=1;i<=n;i++) printf("%.3lf\n",ans[i]);
}

[NOI2007]社交网络(最短路)的更多相关文章

  1. BZOJ1491 [NOI2007]社交网络[最短路计数]

    $n$非常的小,结合题目计算式可以想到$O(n^3)$暴枚$s,t,v$,看$v$在不在$s\to t$最短路上($dis_{s,v}+dis_{v,t}=dis_{s,v}$是$v$在两点最短路上的 ...

  2. BZOJ 1491 [NOI2007]社交网络

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1159  Solved: 660[Submit][Status] ...

  3. 图论(floyd算法):NOI2007 社交网络

    [NOI2007] 社交网络 ★★   输入文件:network1.in   输出文件:network1.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 在社交网络( ...

  4. BZOJ 1491: [NOI2007]社交网络( floyd )

    floyd...求最短路时顺便求出路径数. 时间复杂度O(N^3) ------------------------------------------------------------------ ...

  5. 洛谷 P2047 [NOI2007]社交网络 解题报告

    P2047 [NOI2007]社交网络 题目描述 在社交网络(\(social\) \(network\))的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有\ ...

  6. 【BZOJ1491】[NOI2007]社交网络 Floyd

    [BZOJ1491][NOI2007]社交网络 Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子 ...

  7. [BZOJ1491][NOI2007]社交网络 floyd

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2196  Solved: 1170[Submit][Status ...

  8. 洛谷——P2047 [NOI2007]社交网络

    P2047 [NOI2007]社交网络 $Floyd$,一眼看到就是他(博主是不小心瞄到了这个题的标签吧qwq) 这个题目只要预处理出$S$到$T$的最短路的条数即可,类似$Spfa$的更新方法 如果 ...

  9. BZOJ1491:1491: [NOI2007]社交网络

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2204  Solved: 1175[Submit][Status ...

随机推荐

  1. python之assert

    作用 assert用来验证一个表达式是否正确,如果正确则程序向下执行,如果错误则报错,其中报错信息可以自定义. 例子 表达式没有错误的情况 >>> assert mul(2, 3) ...

  2. 使用JS将图片转为Base64

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. Linux内核调试方法总结之死锁问题分析

    死锁问题分析 死锁就是多个进程(线程)因为等待别的进程已占有的自己所需要的资源而陷入阻塞的一种状态,死锁状态一旦形成,进程本身是解决不了的,需要外在的推动,才能解决,最重要的是死锁不仅仅影响进程业务, ...

  4. 模拟赛DAY1 T1大美江湖

    这就是一个模拟题,注意1234分别对应左右上下横坐标和纵坐标的判断就好了 题解: 需要注意的是,向上取整ceil函数是对于一个double值返回一个double值,也就是说在ceil里面的类型一定要是 ...

  5. MySQL的常用JSON函数

    1. JSON_SEARCH(col ->> '$[*].key', type, val) col: JSON格式的字段名 key:要搜索的col字段的key type:可以为'one'或 ...

  6. Delphi XE2 之 FireMonkey 入门(26) - 数据绑定: TBindingsList: TBindExprItems

    Delphi XE2 之 FireMonkey 入门(26) - 数据绑定: TBindingsList: TBindExprItems 如果要给一对 "源控件" 和 " ...

  7. 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第5节 String类_4_字符串的比较相关方法

    字符串的常用方法 equals是对内容的比较 直接用字符串.equals 小写的h和大写的H肯定是不一样的 推荐和不推荐的写法 运行程序不会报任何的错误 如果把str5设置为null.那么推荐的写法返 ...

  8. netcore2.1 在后台运行一个任务

    在 ASP.NET Core 2.1中, 提供了一个名为BackgroundService的类,在 Microsoft.Extensions.Hosting命名空间中,其代码为 namespace M ...

  9. idea中gradle的springboot的项目热部署

    1:在build.gradle中添加热部署依赖(我gradle版本是5.5.1) // 添加 热部署依赖implementation 'org.springframework.boot:spring- ...

  10. 简述Vue中的计算属性

    1.什么是计算属性 如果模板中的表达式存在过多的逻辑,那么模板会变得臃肿不堪,维护起来也异常困难,因此为了简化逻辑出现了计算属性: <template> <div id=" ...