洛谷P3951

看到题目,很容易想到这一题是求使ax+by=c(a,b,c∈N)无非负整数解的最大c

由裴蜀定理可知方程一定有整数解(a,b互素,gcd(a,b)=1|c)

解法一:暴力枚举

看到题目我的第一想法是求出ax+by=1的解然后枚举c使x,y扩大c倍后仍无非负整数解

枚举c应该要从1到a*b……看看数据范围就知道会WA掉4个点

这个解法很傻瓜我就不再赘述了……代码略

期望得分:60

解法二:小学奥数

虽然我不想承认但真**是小学奥数!!

因为a,b,c都>0,所以方程的解最多有一个负数

不妨设y<0,则x≥0

那么对于c=ax+by,y=-1时c取最大值,c=ax-b

接下来我们来看x

事实上0≤x≤b-1

为什么呢?

首先注意到这样一个事实:线性方程ax+by=c的整数解可以表示为{x-kb,y+ka}(k∈Z)

因为当x≤b-1时,一定不存在k∈Z使得x-kb≥0且y+ka≥0

这样可能看着不是很清楚,那么我们再反证一下会更容易明白

当x≥b时,显然x-b≥0且y+a≥0(此时k=1),与假设矛盾,故不成立

这样我们就证明了0≤x小于等于号怎么≤b-1

上面我们得出c=ax-b

那么当x=b-1时c取最大值a(b-1)-b=ab-a-b

综上,当y=-1,x=b-1时c取最大值ab-a-b

有的人可能会说,上面假设的是y<0,那x<0的时候c最大值还是不是ab-a-b呢?

很简单,同理,将x=-1,y=a-1代入,c=-a+b(a-1)=ab-a-b

期望得分:100

AC代码(有必要吗……):

 #include<cstdio>
int main()
{
long long a,b;//a,b足够大时a*b会爆int
scanf("%lld%lld",&a,&b);
printf("%lld",a*b-a-b);
return ;
}

NOIP2017 D1T1 小凯的疑惑的更多相关文章

  1. NOIP2017 D1T1小凯的疑惑

    这应该是近年来最坑的第一题了. 我第一眼看到这题上来就打表,数据范围告诉我复杂度应该是log级的,然而一个小时后才发现是一个输出结论. 设较小数是a 较大数是b 写出几组可以发现一个规律就是一旦出现连 ...

  2. 【NOIP2017】小凯的疑惑

    原题: 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的价 ...

  3. NOIp D1T1 小凯的疑惑

    吐槽 果然让人很疑惑,这道题,对于我这种数学渣渣来说太不友好了,哪里想得到结论,猜也猜不到. 思路一 纯数学,见过的飞快切掉,没见过的就... 结论就是:已知$a,b$为大于$ 1 $的互质的正整数, ...

  4. loj2314 「NOIP2017」小凯的疑惑[同余最短路or数论]

    这题以前就被灌输了“打表找规律”的思想,所以一直没有好好想这道题,过了一年还不太会qwq.虽然好像确实很简单,但是还是带着感觉会被嘲讽的心态写这个题解...而且还有一个log做法不会... 法1:(一 ...

  5. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  6. 【比赛】NOIP2017 小凯的疑惑

    找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...

  7. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  8. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  9. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

随机推荐

  1. 基于DRF的图书增删改查

    功能演示 信息展示 添加功能 编辑功能 删除功能 DRF构建后台数据 本例的Model如下 from django.db import models class Publish(models.Mode ...

  2. robot framework 接口自动化之登录

    网络不便,好久没更了,颓废好久,惭愧 目录 1.安装必须的库 2.固定格式介绍 3.完成一个登录 1.安装必须的库 requestsLibrary.requests安装 1.pip install r ...

  3. 【AOP】操作相关术语---【Spring】的【AOP】操作(基于aspectj的xml方式)

    [AOP]操作相关术语 Joinpoint(连接点):类里面哪些方法可以被增强,这些方法称为连接点. Pointcut(切入点):在类里面可以有很多的方法被增强,比如实际操作中,只是增强了类里面add ...

  4. 虚拟机中Ubuntu安装及基本功能设置

    虚拟机下安装ubuntu 虚拟机使用VMware14 PRO,在TOSHIBA EXT/Anon Comm Group\Experimental Environment\VMware下. 系统使用ub ...

  5. Git配置用户名、邮箱

    当安装完 Git 应该做的第一件事就是设置你的用户名称与邮件地址. 这样做很重要,因为每一个 Git 的提交都会使用这些信息,并且它会写入到你的每一次提交中,不可更改. 否则,用户名会显示为unkno ...

  6. JSP———数据交互【1】

    JSP的内置对象 不用声明就可以在JSP页面中使用 request对象 内置对象 request 封装了用户提交的信息,主要用于处理客户端请求 <FORM action="tom.js ...

  7. 【MM系列】SAP MM模块-如何修改物料的移动平均价

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MM模块-如何修改物料的移动 ...

  8. redis在ubuntu下的安装

    安装: 1.apt-get install redis 2.接下来输入redis-cli,登陆redis,然后就可以操作redis了 卸载 在ubuntu下卸载redis 1. 卸载软件 apt-ge ...

  9. Scratch少儿编程系列:(一)版本的选择及安装

    工欲善其事必先利其器,为了使用Scratch,首先要到官网上下载相关软件. 官网链接地址为:https://scratch.mit.edu/download,我用的是Windows系统,下载对应的安装 ...

  10. index.html(xpath素材)

    <bookstore> <title>新华书店</title> <book href="http://www.langlang2017.com/&q ...