海量数据处理

分而治之

核心思想:

  • 把数据分发到多个节点
  • 移动计算到数据附近
  • 计算节点进行本地数据处理
  • 优选顺序,次之随机读

一、HDFS概述

修改,先删除,再重新生成

1.架构

namenode维护着HDFS中存储的文件的元数据,以及每个文件块的列表,以及块所在datanode的信息。namenode会把元数据信息加载到内存中,管理副本数,默认副本是三个副本,每个block复制到多个datanode上存储。

通常启动两个namenode,active和standby。

Datanode真正数据块存储,执行客户端读写请求,datanode也会周期性的与namenode进行通信,汇报datanode上block的信息及其运行状态。

2.Active NameNode

  • 主Master(只有一个)
  • 管理HDFS文件系统的命名空间
  • 维护文件元数据信息
  • 管理副本策略,默认3个副本
  • 处理客户端读写请求

HDFS文件系统和Linux文件系统非常相似,都是通过文件和目录管理的,所有目录和文件的层级关系可以看成一棵文件树。

由上图可知,namenode维护着文件系统树,及整棵树内所有的文件和目录,这些信息以命名空间镜像文件fsimage和编辑日志文件edits两种文件形式,永久保存在本地磁盘当中。

为了快速访问,在集群运行的时候,会把命名空间信息加载到内存当中。

namenode在内存中维护着文件的元数据,包括文件被切分成哪些块,每个块的副本数,生成时间,文件的权限,以及块所在的datanode位置的映射信息。这个映射信息并不保存到磁盘中,即fsimage当中不保存block块和datanode的映射关系。datanode周期性的向namenode发送心跳信息,汇报其存储的所有块的列表信息,namenode通过datanode上传列表信息,就会确保拥有最新的块映射信息。如果namenode重启,datanode向namenode汇报自己存储的block块的信息,namenode可以汇总datanode上存储的块信息,在内存中重建block和datanode的映射。

在HDFS中,某个datanode心跳超时,namenode就认为这个datanode不可用,就把该datanode标记为死亡,并且不会向这个标记为死亡的datanode转发任何新的读写请求,如果datanode这台机器被标记为死亡,存储的block块不可用,导致块的副本数低于正常水平,namenode会在适当的时候拷贝部分,使副本保持正常的水平。

namenode还负责处理客户端的读写请求,客户端从namenode获取元数据信息,再根据这些信息与datanode进行联系,进行数据块真正的读写操作。

3.NameNode元数据文件

NameNode启动的时候,会先将fsimage文件中的元数据加载到内存中,并执行编辑日志中的各项操作。一旦在内存中建立文件系统元数据的映像,则创建一个新的fsimage文件和一个空的edits文件,在这个过程中namenode运行在安全模式下。
    系统中数据块的位置并不是由namenode维护的,而是以块列表的形势存储在datanode中,在安全模式中,datanode会向namenode发送最新的块列表信息,namenode在内存中建立一块和datanode的映射关系, namenode了解到足够多的块位置信息之后,namenode会对外提供服务。

在NameNode运行期间,客户端对HDFS的写操作都保存到edits文件中,久而久之edits文件会变得很大,虽然这对NameNode运行的时候是没有影响的,但是在NameNode重启的时候,NameNode先将fsimage中的内容映射到内存中,然后再一条一条执行edits编辑日志中的操作。当edits文件非常大的时候会导致namenode启动的时间非常漫长,而在这段时间中HDFS处于安全模式,所以需要在Namenode运行的时候将edits和fsimage定时进行合并,减小edits文件的大小。

  • fsimage文件:是HDFS文件系统存于硬盘中的元数据检查点(即全量),里面记录了自最后一次检查点之前HDFS文件系统中所有目录和文件的序列化信息;
  • edits log文件:保存了自最后一次检查点之后所有针对HDFS文件系统的操作(即增量),比如:增加文件、重命名文件、删除目录等等

NameNode定期将内存中的新增的edits与fsimage合并保存到磁盘。操作被记录到edits中,fsimage并不会同步记录操作,而是在namenode定期地设置检查点,到点将edits与fsimage进行合并,保存到磁盘当中,使fsimage定期的与内存中的元数据信息保持同步,这就保证了NameNode内存中保存一份最新的镜像信息,新的镜像内容=fsimage(旧的镜像内容)+edits(新增的信息)

4.DataNode

  • Slave工作节点,可以启动多个
  • 存储数据块
  • 执行客户端的读写请求操作
  • 通过心跳机制定期向NameNode汇报运行状态和所有块列表信息
  • 在集群启动时DataNode向NameNode提供存储的Block块列表信息

5.Block数据块

  • 文件写入到HDFS会被切分成若干个Block块
  • 数据块大小固定,默认大小128MB,可自定义修改
  • HDFS最小存储单元
  • 若一个块的大小小于设置的数据块大小,则不会占用整个块的空间
  • 默认情况下每个Block有三个副本

6.Client

  • 文件切分
  • 与NameNode交互获取文件元数据信息
  • 与DataNode交互,读取或写入数据
  • 管理HDFS

7.不适合存储小文件

8.Secondary NameNode和Standby NameNde

HDFS单NameNode,即没有配置高可用,会有Secondary NameNode

  • Secondary NameNode负责每隔一段时间将旧的fsimage文件和edits log文件merge成新的fsimage并替换,即为NameNode 合并编辑日志edits log,减少 NameNode 启动时间;
  • 非实时merge,一旦NameNode挂了,可能会导致元数据丢失;

高可用下会有Standby NameNode

  • 实时merge,一旦前者挂了,后者能够马上顶上,不会出现元数据丢失;
  • 同步edits编辑日志,定期合并fsimage与edits到本地磁盘
  • Active NameNode故障快速切换为新的Active

二、高可用原理

基于QJM的高可用机制

搭建Hadoop集群时,在三台及以上,一般奇数个机器上启动JournalNode,组成QJM共享存储系统,该系统非常轻量级,一般不会出现问题

一般会在两个namenode节点上启动两个JournalNode,在另一台节点上再启动一个JournalNode,这个系统里面存储edit log这个编辑日志

1.数据同步

通常启动两个namenode,一个active,一个standby

standbynamenode定期从QJM存储系统里同步activenamenode的元数据信息,使节点间元数据保持一致

active在处理客户端提交的创建文件,移除文件等写请求操作的时候,会首先把这些记录,记录到edit编辑日志中,同时也会同步阻塞并行的向JorunalNode集群中每一个JournalNode发送写请求,大多数Journalnode节点写成功,就认为整个集群写入edit成功了,最后修改内存中的元数据

actice会定对内存中的文件系统命名空间元数据信息创建检查点,在磁盘中生成fsimage镜像文件,持久化存储,另外一个standbynamenode定期从Journalnode集群中同步编辑日志edit,回放到其内存中,也会定期对内存中的元数据信息创建检查点,在磁盘中生成fsimage文件,持久化存储。

2.主备切换

主要使用主备切换控制器,ZKFC

当启动namenode的时候,也会在namenode所在的节点上启动ZKFC守护进程,作为主备切换的控制器,ZKFC启动时,会创建HealthMonitor和ActiveStandbyElector两个组件,前者循环检查namenode健康状况,后者使用zookeeper完成主备的选举。

在HDFS集群启动时,每个namenode对应一个ZKFC,每个ZKFC启动一个ActiveStandbyElector

每次启动时,都会尝试在zookeeper中创建临时锁节点,利用zookeeper写一致性保证最终只有一个activeelector创建锁节点成功。不管ActiveElector在zookeeper上是否创建成功临时锁节点,都会随后向zookeeper来注册监听事件,监听临时锁节点的删除事件

三、 HDFS文件写入流程

首先与namenode进行通信,创建远程的RPC请求,发起创建文件的请求,namenode接收到请求后,执行对新建文件的各种检查,以确保文件是不存在的,以及客户端有创建新文件的权限。所有检查结束后,返回运行写文件的消息。客户端接收到消息后,会把数据流式的写到客户端本地文件系统临时文件中,当临时文件大小达到block块大小(默认128M)的时候,客户端再次向namenode发送上传block块的请求,namenode根据请求在datanode信息池里检查datanode的状态,把存储block的datanode列表,包括备份节点的datanode返回给客户端

客户端接收到该列表,创建第一个datanode连接,请求将这组datanode列表构建成信息流通道

创建完数据流通道,客户端将以数据包的形式按照流式的方式写入到数据文档之中,首先将一个数据包package写入到第一个datanode,node01上,当第一个datanode写磁盘的时候,从第一datanode,通过数据管道将数据包发送到第二个datanode,第二个datanode开始写本地磁盘的时候,从第二个datanode发送数据包到第三个datanode,最后一个datanode写完之后,有确认信息,这个确认信息从保存了该数据包的节点通过管道(第9步)反馈给前一个节点,第二个节点反馈给第一个节点,第一个节点发送确认信息给客户端

等数据块传完之后,客户端发送最终的确认信息给namenode(第10步),第一数据块传输完成。

其他数据块重复上述4-10步

当整个文件写入完成被关闭时,namenode执行提交操作,从而使文件在集群中可见

四、读取流程

首先,客户端通过远程RPC调用,向namenode发送读文件请求(1),namenode接收到请求后,检查读取文件是否存在,检查客户端是否有读该文件的权限(2.1)

namenode从文件的元数据中查询这个文件是由哪些block块组成,这些block块存储在哪些datanode上(2.2)

检查通过后,返回给客户端(3),返回给客户端组成这个要读取文件的数据块列表以及数据块所在datanode的位置

列表中datanode的顺序是按照与客户端的由近到远的顺序来排列的,即客户端访问哪个机器更快一些,哪个排在前面

客户端接收到namenode返回的信息后,创建与存储第一个块的最近的datanode连接

比如在node01上获取block1

datanode将block这个数据传输给客户端,如果访问的datanode出现故障,就会访问备份数据块的数据节点,直到数据块传输完成,关闭与该datanode的连接

然后寻找下一个数据块

直到整个文件合并完成

客户端只要读取连续的数据流即可,其他操作都是透明的,读取完成关闭连接

五、操作

1.Hadoop服务脚本

2.HDFS文件操作命令

hadoop fs: 使用面最广,可以操作任何文件系统。

hadoop dfs和hdfs dfs: 只能操作HDFS文件系统相关(包括与Local FS间的操作),hadoop dfs已经废弃,被hdfs dfs代替。

hadoop fs -ls 显示目录信息,递归-lsr
hadoop fs -mkdir /user/tguigu 在hdfs上创建目录
hadoop fs -moveFromlocal test.txt /user/tguigu/data 从本地剪切粘贴到hdfs
hadoop fs -appendTofile test.txt /user/tguigudata/test.txt 追加一个文件到已经存在的文件末尾
hadoop fs -cat 显示文件内容
hadoop fs -tail 显示一个文件的末尾
hadoop fs -cp /user/tguigu/../x.txt /user/tguigu/test../ 从hdfs的一个路径拷贝到hdfs的另一个路径
hadoop fs -mv /user/tguigu/../x.txt /.../ 在hdfs目录中移动文件
hadoop fs -get /user/tguigu/../x.txt ./ 等同于copyToLocal,就是从hdfs下载文件到本地
hadoop fs -getmerge /user/tguigu//test/* ./zaiyiqi.txt 合并下载多个文件
hadoop fs -put 等同于copyFromLocal上传
hadoop fs -rm 删除文件或文件夹

hadoop fs -rm -r 递归删除
hadoop fs -rmdir 删除空目录
hadoop fs -df 统计文件系统的可用空间
hadoop fs -du 统计文件的大小信息
hadoop fs -setrep 设置hdfs中文件的副本量数

3.HDFS API

public class HDFSClient {
/**
* 获取HDFS文件系统对象
* @return
* @throws IOException
*/
private FileSystem getFileSystem() throws IOException {
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);//创建hdfs文件系统对象
return fs;
} /**
* 读取hdfs中的文件内容
* @param hdfsFilePath
*/
public void readHDFSFile(String hdfsFilePath){
BufferedReader reader = null;
FSDataInputStream fsDataInputStream = null;
//通过HDFS Java API读取HDFS中的文件
try {
Path path = new Path(hdfsFilePath);
fsDataInputStream = this.getFileSystem().open(path);//根据path创建FSDataInputStream输入流对象
reader = new BufferedReader(new InputStreamReader(fsDataInputStream));
String line = "";
while((line = reader.readLine()) != null){
System.out.println(line);
} } catch (IOException e) {
e.printStackTrace();
} finally {
try {
if (fsDataInputStream != null) {
fsDataInputStream.close();
} if (reader != null) {
reader.close();
}
}catch (IOException e) {
e.printStackTrace();
}
}
} /**
* 将本地文件内容写入到HDFS指定文件中
* @param localFilePath
* @param hdfsFilePath
*/
public void writeHDFSFile(String localFilePath,String hdfsFilePath){
FSDataOutputStream fsDataOutputStream = null;
FileInputStream fileInputStream = null;
Path path = new Path(hdfsFilePath);
try {
//根据path创建输出流对象
fsDataOutputStream = this.getFileSystem().create(path); //创建读取本地文件的输入流对象
fileInputStream = new FileInputStream(new File(localFilePath)); IOUtils.copyBytes(fileInputStream,fsDataOutputStream,4096,false); } catch (IOException e) {
e.printStackTrace();
} finally {
try {
if (fsDataOutputStream != null){
fsDataOutputStream.close();
}
if (fileInputStream != null){
fileInputStream.close();
}
} catch (IOException e) {
e.printStackTrace();
}
}
} public static void main(String[] ars) {
String hdfsFilePath = "hdfs://ns/hdfs_client/from_local_2_hdfs.txt";
HDFSClient client = new HDFSClient();
// client.readHDFSFile(hdfsFilePath);
String localFilePath = "/Users/derek/hdfstest.txt"; client.writeHDFSFile(localFilePath,hdfsFilePath); client.readHDFSFile(hdfsFilePath); }
}

Hadoop(二)HDFS的更多相关文章

  1. hadoop(二):hdfs HA原理及安装

    早期的hadoop版本,NN是HDFS集群的单点故障点,每一个集群只有一个NN,如果这个机器或进程不可用,整个集群就无法使用.为了解决这个问题,出现了一堆针对HDFS HA的解决方案(如:Linux ...

  2. Hadoop集群(二) HDFS搭建

    HDFS只是Hadoop最基本的一个服务,很多其他服务,都是基于HDFS展开的.所以部署一个HDFS集群,是很核心的一个动作,也是大数据平台的开始. 安装Hadoop集群,首先需要有Zookeeper ...

  3. Hadoop之HDFS文件操作常有两种方式(转载)

    摘要:Hadoop之HDFS文件操作常有两种方式,命令行方式和JavaAPI方式.本文介绍如何利用这两种方式对HDFS文件进行操作. 关键词:HDFS文件    命令行     Java API HD ...

  4. Hadoop入门--HDFS(单节点)配置和部署 (一)

    一 配置SSH 下载ssh服务端和客户端 sudo apt-get install openssh-server openssh-client 验证是否安装成功 ssh username@192.16 ...

  5. Hadoop基础-HDFS的API常见操作

    Hadoop基础-HDFS的API常见操作 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本文主要是记录一写我在学习HDFS时的一些琐碎的学习笔记, 方便自己以后查看.在调用API ...

  6. Hadoop基础-HDFS安全管家之Kerberos实战篇

    Hadoop基础-HDFS安全管家之Kerberos实战篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们都知道hadoop有很多不同的发行版,比如:Apache Hadoop ...

  7. Hadoop基础-Hdfs各个组件的运行原理介绍

    Hadoop基础-Hdfs各个组件的运行原理介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.NameNode工作原理(默认端口号:50070) 1>.什么是NameN ...

  8. Hadoop基础-HDFS的读取与写入过程剖析

    Hadoop基础-HDFS的读取与写入过程剖析 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客会简要介绍hadoop的写入过程,并不会设计到源码,我会用图和文字来描述hdf ...

  9. 深入理解Hadoop之HDFS架构

    Hadoop分布式文件系统(HDFS)是一种分布式文件系统.它与现有的分布式文件系统有许多相似之处.但是,与其他分布式文件系统的差异是值得我们注意的: HDFS具有高度容错能力,旨在部署在低成本硬件上 ...

  10. Hadoop基础-HDFS的读取与写入过程

    Hadoop基础-HDFS的读取与写入过程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 为了了解客户端及与之交互的HDFS,NameNode和DataNode之间的数据流是什么样 ...

随机推荐

  1. springboot基于注解动态配置多数据源以及多数据源的事务统一

    参考文档:https://www.cnblogs.com/zhangboyu/p/7622412.html https://blog.csdn.net/qq_34322777/article/deta ...

  2. 转载 Log4j2在WEB项目中配置

    最近决定在新WEB项目中使用新的日志系统Log4j2. 官方介绍和学习文档网址为http://logging.apache.org/log4j/2.x/ 首先在WEB项目中引入以下几个jar包: ① ...

  3. Python 获取当前文件所在路径

    记录几个os获取路径的函数 1. os.path.realpath(__file__):获取文件的绝对路径,包括文件自己的名字 2.os.path.dirname(path):获取path路径的上级路 ...

  4. C语言——杂实例

    #include <stdio.h> #include <stdlib.h> #include <string.h> void f (int **p); void ...

  5. 【Flutter学习】之动画实现原理浅析(二)

    1. 介绍 本文会从代码层面去介绍Flutter动画,因此不会涉及到Flutter动画的具体使用. 1.1 Animation库 Flutter的animation库只依赖两个库,Dart库以及phy ...

  6. vue的proxy和defineProperty区别

    Object.defineProperty(obj,"name",{ set:function(val){ if(var==='lisi'){ console.log(" ...

  7. AcWing 208. 开关问题 (高斯消元+状压)打卡

    有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开. 你的目 ...

  8. webpack 导出、导入模块(及路径)

    参考:https://blog.csdn.net/xyphf/article/details/83411552 (下面的代码亲测有效) 注:导入的模块的方法,只有两种方法  import 和 requ ...

  9. window10安装mysql-5.7.20-winx64.zip

    window10安装mysql--winx64.zip 原文 https://www.cnblogs.com/ericli-ericli/p/6916285.html D:\share\src\win ...

  10. python的OS模块生成100个txt文件

    #!/user/bin/env/python35 # -*-coding:utf-8-*- # author:Keekuun """ 问题:生成一个文件夹,文件夹下面生成 ...