Tensorflow创建和读取17flowers数据集
http://blog.csdn.net/sinat_16823063/article/details/53946549
Tensorflow创建和读取17flowers数据集
- import os
- import tensorflow as tf
- from PIL import Image
- cwd = os.getcwd()
- classes = os.listdir(cwd+"/17flowers/jpg")
- writer = tf.python_io.TFRecordWriter("train.tfrecords")
- for index, name in enumerate(classes):
- class_path = cwd + "/17flowers/jpg/" + name + "/"
- if os.path.isdir(class_path):
- for img_name in os.listdir(class_path):
- img_path = class_path + img_name
- img = Image.open(img_path)
- img = img.resize((224, 224))
- img_raw = img.tobytes() #将图片转化为原生bytes
- example = tf.train.Example(features=tf.train.Features(feature={
- "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[int(name)])),
- 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
- }))
- writer.write(example.SerializeToString()) #序列化为字符串
- writer.close()
- print(img_name)
我们使用tf.train.Example来定义我们要填入的数据格式,其中label即为标签,也就是最外层的文件夹名字,img_raw为易经理二进制化的图片。然后使用tf.python_io.TFRecordWriter来写入。基本的,一个Example中包含Features,Features里包含Feature(这里没s)的字典。最后,Feature里包含有一个 FloatList, 或者ByteList,或者Int64List。就这样,我们把相关的信息都存到了一个文件中,所以前面才说不用单独的label文件。而且读取也很方便。
下面测试一下,已经存好的训练集是否可用:
- for serialized_example in tf.python_io.tf_record_iterator("train.tfrecords"):
- example = tf.train.Example()
- example.ParseFromString(serialized_example)
- image = example.features.feature['image'].bytes_list.value
- label = example.features.feature['label'].int64_list.value
- # 可以做一些预处理之类的
- print image, label
可以输出值,那么现在我们创建好的数据集已经存储在了统计目录下的train.tfrecords中了。接下来任务就是通过队列(queue)来读取这个训练集中的数据。
- def read_and_decode(filename):
- #根据文件名生成一个队列
- filename_queue = tf.train.string_input_producer([filename])
- reader = tf.TFRecordReader()
- _, serialized_example = reader.read(filename_queue)
- #返回文件名和文件
- features = tf.parse_single_example(serialized_example, features={
- 'label': tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string), })
- img = tf.decode_raw(features['img_raw'], tf.uint8)
- img = tf.reshape(img, [224, 224, 3])
- img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
- label = tf.cast(features['label'], tf.int64)
- return img, label
其中的filename,即刚刚通过TFReader来生成的训练集。通过将其转化成string类型数据,再通过reader来读取队列中的文件,并通过features的名字,‘label’和‘img_raw’来得到对应的标签和图片数据。之后就是一系列的转码和reshape的工作了。
- img, label = read_and_decode("train.tfrecords")
- img_batch, label_batch = tf.train.shuffle_batch([img, label],batch_size=100, capacity=2000, min_after_dequeue=1000)
- labels = tf.one_hot(label_batch,17,1,0)
- coord = tf.train.Coordinator()
- threads = tf.train.start_queue_runners(coord=coord,sess=sess)
- for i in range(200):
- batch_xs, batch_ys = sess.run([img_batch, labels])
- print(sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5}))
- print("Loss:", sess.run(cross_entropy,feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5}))
- if i % 50 == 0:
- print(compute_accuracy(mnist.test.images, mnist.test.labels))
- coord.request_stop()
- coord.join()
注意一点,由于这里使用了队列的方式来进行训练集的读取,所以异步方式,通过Coordinator让queue runner通过coordinator来启动这些线程,并在最后读取队列结束后终止线程。
Tensorflow创建和读取17flowers数据集的更多相关文章
- 在C#下使用TensorFlow.NET训练自己的数据集
在C#下使用TensorFlow.NET训练自己的数据集 今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分 ...
- (第二章第三部分)TensorFlow框架之读取二进制数据
系列博客链接: (第二章第一部分)TensorFlow框架之文件读取流程:https://www.cnblogs.com/kongweisi/p/11050302.html (第二章第二部分)Tens ...
- tensorflow之数据读取探究(2)
tensorflow之tfrecord数据读取 Tensorflow关于TFRecord格式文件的处理.模型的训练的架构为: 1.获取文件列表.创建文件队列:http://blog.csdn.net/ ...
- 【猫狗数据集】谷歌colab之使用pytorch读取自己数据集(猫狗数据集)
之前在:https://www.cnblogs.com/xiximayou/p/12398285.html创建好了数据集,将它上传到谷歌colab 在colab上的目录如下: 在utils中的rdat ...
- TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)
本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...
- TensorFlow从0到1之TensorFlow csv文件读取数据(14)
大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV ...
- C#无限极分类树-创建-排序-读取 用Asp.Net Core+EF实现之方法二:加入缓存机制
在上一篇文章中我用递归方法实现了管理菜单,在上一节我也提到要考虑用缓存,也算是学习一下.Net Core的缓存机制. 关于.Net Core的缓存,官方有三种实现: 1.In Memory Cachi ...
- [转载]MongoDB学习 (四):创建、读取、更新、删除(CRUD)快速入门
本文介绍数据库的4个基本操作:创建.读取.更新和删除(CRUD). 接下来的数据库操作演示,我们使用MongoDB自带简洁但功能强大的JavaScript shell,MongoDB shell是一个 ...
- excel2003和excel2007文件的创建和读取
excel2003和excel2007文件的创建和读取在项目中用的很多,首先我们要了解excel的常用组件和基本操作步骤. 常用组件如下所示: HSSFWorkbook excel的文档对象 HSSF ...
随机推荐
- 声明对象的方式/构造函数/原型/this指向
函数的发展历程(声明函数的方式): 1.通过Object构造函数或字面量的方式创建单个对象 var obj = new Object; obj.name="新华"; o ...
- mplayer - Linux下的电影播放器
概要 mplayer [选项] [ 文件 | URL | 播放列表 | - ] mplayer [全局选项] 文件1 [特定选项] [文件2] [特定选项] mplayer [全局选项] {一组文件和 ...
- hashlib模块和logging模块
hashlib Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值: import hashlib m=hashli ...
- 16.Linux-CentOS系统进入单用户模式修改root用户密码操作
问题描述: root用户密码忘记,进入单用户重置root用户密码 解决步骤: 1.重启服务器,在系统显示内核版本界面后“按E键”,进入内核启动项2.找到Linux16这一行段,将“ro”修改成“rw” ...
- dos2unix 将DOS格式转换成NUIX格式
1.命令功能 dos2unix将windows文件格式转换成unix文件格式. 2.语法格式 dos2unix file 3.使用范例 [root@localhost ~]# dos2unix wi ...
- [效率神技]Intellij 的快捷键和效率技巧|系列一|常用快捷键
Intellij 是个功能强大的IDE,这里只讲window下社区版的Intellij. 1. 常用快捷: Alt+回车 导入包,自动修正Ctrl+N 查找类Ctrl+Shift+N 查找文件Ct ...
- Linux shell 批量验证端口连通性
工作中会遇到验证到某某服务器端口是否连通,如果IP或端口多时,用shell还是很省时省力的,看下面的脚本: #!/bin/bash # #database check #set -o nounset ...
- spring security基本知识(三) 过滤详细说明
在我们前面的文章Spring Security 初识(一)中,我们看到了一个最简单的 Spring Security 配置,会要求所有的请求都要经过认证.但是,这并不是我们想要的,我们通常想自定义应用 ...
- JS 图片转blob 转base64
//转换为blob有跨域限制 var loadImageToBlob = function (url, callback) { if (!url || !callback) return false; ...
- CSS3——制作人物走路的小动画
一个很简单的小动画,但是还挺有意思的,就是找这种图片很麻烦,我这里把我找的一张图片贴上来,这张图片是我在网上找的,又改了背景色和大小. <!DOCTYPE html> <html l ...