决策树简单描述

决策树的样子大概是这个样子的:

选择一个特征作为根节点,把这个特征划分成两个孩子节点,每个孩子节点就是原始数据集的子集,然后再找一个特征作为划分……


划分的好坏,如图所示:

用纯度Purity来衡量划分的效果,如果划分的好,那么每一个子集都是某一类占据大多数,如果每一个子集都是跟父节点一样的状态,那么就是Low purity。

一个好的划分要满足下面两个特点:

  1. 划分是High purity
  2. 划分产生的两个子节点的样本数量相近,避免产生非常小的子集。

决策树的终止条件

  1. 树的深度到达一定条件;
  2. 每一个节点中的样本数量到达一个下线
  3. 不会再有划分,可以增加节点的purity了

衡量purity的三种方法

有不同的衡量purity的方法,不同的衡量方法会导致不同的分裂。

Gini Coefficient

  • Pr(k)是一个样本属于类别K的概率;
  • C就是类别的总数

GINI系数的计算方法:


Entropy熵



可以看出来,GINI系数是类别的概率乘上类别的概率,而熵是类别的概率呈上类别概率的logarithm

  • GINI的取值范围是0.5~1,越大越purity;
  • Entropy的取值范围是0~1,越小越purity

    介绍完了熵,那么什么是信息增益

    是要最大化的信息增益:



    因为Entropy取值范围是0就purity,所以information gain越大,那么说明分割的purity越好。

看一下Entropy的计算方法:

决策树purity/基尼系数/信息增益 Decision Trees的更多相关文章

  1. 海量数据挖掘MMDS week6: 决策树Decision Trees

    http://blog.csdn.net/pipisorry/article/details/49445465 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  2. Decision Trees 决策树

    Decision Trees (DT)是用于分类和回归的非参数监督学习方法. 目标是创建一个模型,通过学习从数据特征推断出的简单决策规则来预测目标变量的值. 例如,在下面的例子中,决策树从数据中学习用 ...

  3. Facebook Gradient boosting 梯度提升 separate the positive and negative labeled points using a single line 梯度提升决策树 Gradient Boosted Decision Trees (GBDT)

    https://www.quora.com/Why-do-people-use-gradient-boosted-decision-trees-to-do-feature-transform Why ...

  4. CatBoost使用GPU实现决策树的快速梯度提升CatBoost Enables Fast Gradient Boosting on Decision Trees Using GPUs

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...

  5. Logistic Regression vs Decision Trees vs SVM: Part II

    This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees ...

  6. Logistic Regression Vs Decision Trees Vs SVM: Part I

    Classification is one of the major problems that we solve while working on standard business problem ...

  7. Machine Learning Methods: Decision trees and forests

    Machine Learning Methods: Decision trees and forests This post contains our crib notes on the basics ...

  8. 壁虎书6 Decision Trees

    Decision Trees are versatile Machine Learning algorithms that can perform both classification and re ...

  9. 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm

    一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...

随机推荐

  1. 【蜕变之路】第20天 UUID和时间戳的生成 (2019年3月10日)

    Hello,大家好!我是程序员阿飞!今天主要学习的内容是:字符串UUID的随机生成和时间戳的随机生成.好了,直接进入正题. 1.UUID的随机生成 /*          * uuid的随机生成方式 ...

  2. Ansible 配置文件详解

    # config file for ansible -- http://ansible.com/ # ============================================== #  ...

  3. 《数据分析实战:基于EXCEL和SPSS系列工具的实践》一1.4 数据分析的流程

    本节书摘来华章计算机<数据分析实战:基于EXCEL和SPSS系列工具的实践>一书中的第1章 ,第1.4节,纪贺元 著 更多章节内容可以访问云栖社区"华章计算机"公众号查 ...

  4. 【K8S】基于单Master节点安装K8S集群

    写在前面 最近在研究K8S,今天就输出部分研究成果吧,后续也会持续更新. 集群规划 IP 主机名 节点 操作系统版本 192.168.175.101 binghe101 Master CentOS 8 ...

  5. TOP-K Problems

    最小的K个数 直接数组排序,取出前K个.复杂度\(O(nlogn)\). 分治 此题只要求出最小的K个数,并不要求这K个数有序. 我们可以借鉴快排中的partition做法,将比第K个数小的都放前面, ...

  6. js世家委托详解

    事件原理 通过div0.addElementListener来调用:用法:div0.addElementListener(事件类型,事件回调函数,是否捕获时执行){}.1.事件类型(type):必须是 ...

  7. golang关键字select的三个例子, time.After模拟socket/心跳超时

    golang关键字select的三个例子, time.After模拟socket/心跳超时   例子1 select会随机选择一个可执行的case   // 这个例子主要说明select是随机选择一个 ...

  8. NIO(一) Java NIO 概述

    转:http://ifeve.com/overview/ Java NIO 由以下几个核心部分组成: Channels Buffers Selectors 虽然Java NIO 中除此之外还有很多类和 ...

  9. Kafka 的一些知识点整理【1】

    First: Kafka 是什么? Kafka 是一个发布订阅系统 最初是是LinkedIn 开发 最后交给Apache 开源组织 github地址:https://github.com/apache ...

  10. 【Linux基础总结】Linux基本命令

    Linux基本命令 Linux系统下的文件类型.权限.所属用户与组 文件类型 - (文件) d(目录) ->类似windows系统下的文件夹 l (链接) ->类似windows系统下的快 ...