前言背景

算法优化改版有大需求要上线,在线特征dump数据逐步放量,最终达到现有Kafka集群5倍的流量,预计峰值达到万兆网卡80%左右(集群有几十个物理节点,有几PB的容量,网卡峰值流出流量会达到800MB左右/sec、写入消息QPS为100w+ msgs/sec)。上下游服务需要做扩容评估,提前做好容量规划,保障服务持续稳定运行

  • L3层 dump特征 @xxx

    • 1.依赖文章特征公共服务
    • 2.依赖用户特征公共服务 前期可以一起共建
  • 评估dump特征数据量 @xxx
  • kafka新增Topic接收dump数据,评估kafka是否需要扩容 @xxx
  • 新增拼接数据流支撑dump特征,需要评估新增机器 @xxx

经过对Kafka集群软硬件资源及利用率综合分析与评估,决定不扩容机器,完全可以应对流量扩大5倍的性能挑战

流量灰度时间表

  • 2020-02-21放量进度 流量灰度10%
  • 2020-02-24放量进度 流量灰度30%
  • 2020-03-02放量进度 流量灰度50%
  • 2020-03-02放量进度 流量灰度70%
  • 2020-03-03放量进度 流量灰度85%
  • 2020-03-05放量进度 流量灰度100%

优化纪实

预先优化在topics创建的情况下,没有流量时做的优化工作
本次在线特征dump放量topics列表如下:

onlinefeedback
indata_str_onlinefeedback_mixxxbrowser
indata_str_onlinefeedback_oppoxxxbrowser
indata_str_onlinefeedback_3rd
......

violet集群的topics为indata_str_click_s3rd 和 indata_str_video_3rd_cjv 完成扩容并rebalance找出其他流量大的topics列表
以上topic都已经创建,但是只覆盖了少数磁盘挂载点,violet集群有21个节点252磁盘挂载点,但有些topics的partitions数量不到30,造成磁盘利用率不高,IO不均衡。
优化点:扩容partitions数量,覆盖更多磁盘挂载点

现状&优化旅程

2020-02-21日 开始放量 topics均值流量小于20%,以下是放量后22~23日监控数据(读写IOPS、IOutil)

从以上数据分析,读写IOPS和ioutil极其不均衡,而且其中写IOPS走向极端上下两条线,后来查明原因是zk事务日志是实时单条commit,大量flink使用0.8.x版本,消费状态用zk存储造成的。另外还发现violet出口流量不均衡,高的70%、低的10%左右,当时flink消费出现阻塞现象,原因为上线前Flink未及时调大fetch.message.max.bytes的大小,引发violet集群部分broker网络出口流量飙升。

2020-02-26日 在线特征dump数据的topics均值放量到50%左右
优化zk集群写入性能从1.5k降到100以内,单事务写强制刷盘改为事务批量定期刷盘,在线Dump特征流量放量,排查violet集群线上隐患,由于消费端flink还是依赖的较低kafka-0.8.x版本,消费状态存储zk,导致写入频繁。此外zk的日志数据和事务数据目录从数据盘调整到系统盘,数据盘统一Kafka使用

客户端使用优化

serving使用kafka按key进行hash分配出现生产倾斜导致消费出现lag,和业务方商定修改消费逻辑解决此问题
2020-03-02日 在线特征dump放量75%,优化violet集群IO完成了80%以上,支撑在线特征100%放量应该没有问题,主要对10.120.14.11、10.103.35.7、10.103.35.2、10.120.10.8等4个节点IO削峰均衡化,热点挂载点IO峰值下降30~60%不等,操作策略如下:

  • 扩容partitions,topics数据量大,partitions数量少,与业务沟通,扩partitions分配到低IO挂载点上
  • 迁移partitions,partitions目录迁移和节点迁移,找出热点挂载点,分析出高读写的partitions,迁移到使用率低的磁盘挂载点上
  • 调整topic保留时间,保证业务磁盘容量够用不浪费,与业务沟通,设置topics最小保留时间

优化前监控(3.02~3.03区间数据)

ioutil被打满,磁盘非常繁忙,响应变慢等待时间变长

优化后效果如下(3.06日区间数据)

以上红框部分IO持续高位为当时部分partition迁移导致的,可以忽略不计,由于2020-03-02、2020-03-03、2020-03-05持续放量直到100%,优化效果不明显

2020-03-04日 客户端参数优化

jstorm

 flink

03-06日 优化violet集群IO完成了95%以上,主要对10.120.14.11、10.103.35.7、10.103.35.2、10.103.35.3、10.103.35.10、10.120.10.2、10.120.10.3、10.120.10.5、10.120.10.6、10.120.10.7、10.120.10.8、10.120.10.9、10.120.10.11等13个节点IO削峰均衡化和磁盘使用率均衡化

下面是3.07~3.08日区间监控数据

3.08日 内时间点监控数据

3.08日 是周日 通过监控获知indata_str_onlinefeedback_mibrowser和indata_str_onlinefeedback_3rd-small消费流量比较大,需要做IO均衡化
indata_str_onlinefeedback_mibrowser每秒消费流量

indata_str_onlinefeedback_3rd-small每秒消费流量2.5GB

03.09日 截止下午17:00最近6小时数据(3.08日晚优化后效果)

内核参数优化

sudo blockdev --setra  16384  /dev/sdx
sudo sh -c 'echo "4096" > /sys/block/sdx/queue/nr_requests'
sudo sh -c 'echo "500" > /proc/sys/vm/dirty_writeback_centisecs'
sudo sh -c 'echo "35" > /proc/sys/vm/dirty_ratio'
sudo sh -c 'echo "5" > /proc/sys/vm/dirty_background_ratio'
sudo sh -c 'echo "2000" > /proc/sys/vm/dirty_expire_centisecs'

2020-03-11日 截止下午17:00最近6小时数据  

能否完全磁盘IO均衡,比较困难,但还可以降低,因为这跟客户端生产/消费策略及消费历史数据有关,有些不可控因素。

2020-03-11日 kafka jvm heap优化 通过Kafka集群业务监控发现利用率低
减少jvm heap大小,让渡给pagecache做系统级数据缓存

另外Apache Kafka PMC大神王国璋回复:Kafka对内存要求不大,但是如果客户端版本较低会需要down convert version,这个过程是非常消耗CPU和内存的。原因是Producer向Kafka写入数据时,占用的堆外内存NIO Buffer,当消费读数据时,Kafka并不维护内存数据,因为使用系统函数sendfile将数据直接从磁盘文件复制到网卡设备中,而不需要经由应用程序之手。采集监控数据如下:

NIO Buffer

non-heap memory

早期jvm heap配置为32GB,后来优化为16GB,现在降到10GB,既保证了kafka进程稳定,又不浪费内存

优化能否一次性解决到位

性能优化能否预先或提前一次性全部搞定?
一般性topics的partitions扩容可以提前做,jvm heap也可以提前修改,但是有些参数就没法确定了,因为集群流量不大,负载不高,没有性能瓶颈,找不到更看不出瓶颈在哪里,优化了也看不出效果。以内核参数优化为例

Centos Performance Tuning

另外IO均衡化也是,集群流量压力不大,找不到需要IO均衡化的目标topics。只有流量逐步放大,才容易发现并识别问题topics

所以优化需要分类、分批、分场景、根据瓶颈、风险、效果、难易程度逐步推进。

从预先优化到全面优化

在线特征dump上线持续放量直至100%过程,我们做了大量调整和优化,它是一个循序渐进和不断完善的过程,不可能一蹴而就,回顾优化列表如下:

  • 提前预先优化,预估大流量topics,扩容partitions覆盖更多磁盘挂载点
  • 依赖服务zookeeper优化:单条事务消息刷盘改为批量刷盘
  • 容器级优化:jvm heap利用率优化,从16GB降低大10GB,多余物理内存腾出给pagecache使用
  • Kafka服务应用级优化
    • 调大replica.fetch.wait.max.ms,降低replica fetch Request无效请求数,释放cpu计算和内存资源
    • 增大replica.fetch.max.bytes,特别是kafka重启降低目标broker读IOPS
    • 调大为zookeeper.session.timeout = 20000ms,避免网络抖动异常导致broker掉线
  • 业务客户端优化
    • jstorm

      • 生产端:增大batch大小,降低Producer Request次数,给磁盘write IO降压
      • 消费端:增大各个fetch参数,降低生产/消费速率,给磁盘read IO降压
    • flink:增大并行度,结合异步和jvm参数
  • 持续IO均衡化
    • 扩容partitions,topics数据量大,partitions数量少,与业务沟通,扩partitions分配到低IO挂载点上
    • 迁移partitions,partitions目录迁移和节点迁移,找出热点挂载点,分析出高读写的partitions,迁移到使用率低的磁盘挂载点上
    • 调整topic保留时间,保证业务磁盘容量够用不浪费,与业务沟通,设置topics最小保留时间
  • centos内核参数优化,目标是提升性能,保证稳定,同时充分利用pagecache和OS读写磁盘特性,用各种策略榨干取尽其资源
    • 设置/sys/block/sdb/queue/read_ahead_kb
    • 设置/sys/block/sdc/queue/nr_requests
    • ...省略,了解更多请看 centos系统参数优化

partition迁移重点分析

要做到全面性、多维度、立体化的综合性能优化并达到预期理想效果,需要对相关Kafka、jvm、netty技术原理及OS等等(不限于)有相当理解。例如持续IO均衡化,就是需要运用综合手段来解决,利用管理平台、各类监控数据和shell命令找出触发瓶颈的topics及对应partitions,然后用工具迁移实现IO再平衡。

以上操作是反复循环进行的动作,观察-》分析-》操作-》查看效果-》再观察... 反复进行直至达到最佳状态

以下为partitions目录迁移bugs,经过分析,重启后解决,错误原因是broker应用内存中保留了partition目录迁移状态信息,重启后还原,但继续执行迁移需要重新操作

小结

  • 预先优化,保证初期放量稳定,性能不打折
  • 持续优化,采取多种手段拍平IO毛刺,同时兼顾磁盘容量均衡
  • 想要达到最佳效果,需要对centOS底层TCP传输、网络处理、pagecache使用、IO调度、磁盘读写调度及刷盘机制有综合性全面的理解;要对Kafka的底层原理、各种配置参数项等具有深刻理解,可以进行Kafka集群参数调优,快速处理突发故障、恢复集群抖动和动态进行集群扩缩容等

博客引用地址:https://www.cnblogs.com/lizherui/p/12632988.html

大流量大负载的Kafka集群优化实战的更多相关文章

  1. Kafka集群优化篇-调整broker的堆内存(heap)案例实操

    Kafka集群优化篇-调整broker的堆内存(heap)案例实操 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.查看kafka集群的broker的堆内存使用情况 1>. ...

  2. Kafka 集群在马蜂窝大数据平台的优化与应用扩展

    马蜂窝技术原创文章,更多干货请订阅公众号:mfwtech Kafka 是当下热门的消息队列中间件,它可以实时地处理海量数据,具备高吞吐.低延时等特性及可靠的消息异步传递机制,可以很好地解决不同系统间数 ...

  3. 大数据平台搭建-kafka集群的搭建

    本系列文章主要阐述大数据计算平台相关框架的搭建,包括如下内容: 基础环境安装 zookeeper集群的搭建 kafka集群的搭建 hadoop/hbase集群的搭建 spark集群的搭建 flink集 ...

  4. CentOS6安装各种大数据软件 第五章:Kafka集群的配置

    相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...

  5. 大数据 -- zookeeper和kafka集群环境搭建

    一 运行环境 从阿里云申请三台云服务器,这里我使用了两个不同的阿里云账号去申请云服务器.我们配置三台主机名分别为zy1,zy2,zy3. 我们通过阿里云可以获取主机的公网ip地址,如下: 通过secu ...

  6. 大数据 --> Kafka集群搭建

    Kafka集群搭建 下面是以三台机器搭建为例,(扩展到4台以上一样,修改下配置文件即可) 1.下载kafka http://apache.fayea.com/kafka/0.9.0.1/ ,拷贝到三台 ...

  7. kafka能做什么?kafka集群配置 (卡夫卡 大数据)

    什么是Kafka 官网介绍: 几个概念: 详细介绍 : 操作kafka: kafka集群 消息测试 问题检测 什么是Kafka 官网介绍: ApacheKafka是一个分布式流媒体平台.这到底是什么意 ...

  8. 大数据运维尖刀班 | 集群_监控_CDH_Docker_K8S_两项目_腾讯云服务器

    说明:大数据时代,传统运维向大数据运维升级换代很常见,也是个不错的机会.如果想系统学习大数据运维,个人比较推荐通信巨头运维大咖的分享课:https://url.cn/5HIqOOr,主要是实战强.含金 ...

  9. zookeeper集群+kafka集群 部署

    zookeeper集群 +kafka 集群部署 1.Zookeeper 概述: Zookeeper 定义 zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目 Zooke ...

随机推荐

  1. JZOJ 1736. 扑克游戏 (Standard IO)

    1736. 扑克游戏 (Standard IO) Time Limits: 1000 ms Memory Limits: 128000 KB Description 有一棵无穷大的满二叉树,根为sta ...

  2. python读入写入中文名图片

    import os import cv2 import numpy as np # 读入中文命名图片 def cv_imread(in_path): cv_img = cv2.imdecode(np. ...

  3. GPS同步时钟装置应用及选择

    GPS同步时钟装置应用及选择 GPS是全球定位系统的简称,GPS具有全天时.全天候.高精度.定位和授时服务,GPS卫星授时成本低.安全可靠.覆盖范围广.GPS同步时钟装置,是指从GPS卫星上获取时间信 ...

  4. Mysql(Mariadb)数据库之Information Schema 库中GLOBAL_VARIABLES表 and SESSION_VARIABLES 表分析

    Information Schema GLOBAL_VARIABLES and SESSION_VARIABLES Tables The Information Schema GLOBAL_VARIA ...

  5. SpiningUP 强化学习 中文文档

    2020 OpenAI 全面拥抱PyTorch,  全新版强化学习教程已发布. 全网第一个中文译本新鲜出炉:http://studyai.com/course/detail/ba8e572a 个人认为 ...

  6. mimtproxy的使用(windows)

    1.安装 pip3 install mitmproxy 或者下载安装指定版本:https://mitmproxy.org/downloads/ 2.配置证书 对于mitmproxy来说,如果想要截获H ...

  7. kafka原理解析

    两张图读懂kafka应用: Kafka 中的术语 broker:中间的kafka cluster,存储消息,是由多个server组成的集群. topic:kafka给消息提供的分类方式.broker用 ...

  8. 异步编程RxJava-介绍

    前言前段时间写了一篇对协程的一些理解,里面提到了不管是协程还是callback,本质上其实提供的是一种异步无阻塞的编程模式:并且介绍了java中对异步无阻赛这种编程模式的支持,主要提到了Future和 ...

  9. 一些http知识

    一些http知识 前置知识 首先放一张非常经典的计算机网络 关于五层结构 「物理层」「数据链路层」「网络层」「运输层」「应用层」我们依次来讲 我们拿wireshark 抓个http包看一下就能明白各层 ...

  10. jvm 性能调优工具之 jstat 命令详解

    Jstat名称:Java Virtual Machine statistics monitoring tool 官方文档:https://docs.oracle.com/javase/1.5.0/do ...