测绘

题目大意

为了研究农场的气候, \(Betsy\) 帮助农夫 \(John\) 做了 \(N(1 <= N <= 100)\) 次气压测量并按顺序记录了结果 \(M_1...M_N(1 <= M_i <= 1,000,000)\) , \(Betsy\) 想找出一部分测量结果来总结整天的气压分布. 她想用 \(K(1 <= K <= N)\) 个数 \(s_j(1 <= s_1 < s_2 < ... < s_K <= N)\) 来概括所有测量结果. 她想限制如下的误差:

 对于任何测量结果子集,每一个非此子集中的结果都会产生误差.总误差是所有测量结果的误差之和.更明确第说, 对于每一个和所有 \(s_j\) 都不同的 \(i\) :

  * 如果 \(i\) 小于 \(s_1\), 误差是: \(2 * | M_i - M_(s_1) |\)

  * 如果 \(i\) 在 \(s_j\) 和 \(s_(j+1)\) 之间,误差是: \(| 2 * M_i - Sum(s_j, s_(j+1)) |\)

  注: \(Sum(x, y) = M_x + M_y\) ; ( \(M_x\) 和 \(M_y\) 之和)

  * 如果 \(i\) 大于 \(s_K\) ,误差为: \(2 * | M_i - M_(s_K) |\)

  \(Besty\) 给了最大允许的误差 \(E (1 <= E <= 1,000,000)\) ,找出最小的一部分结果使得误

差最多为 \(E\).

Input

  第一行: 两个空格分离的数: \(N\) 和 \(E\)

  第 \(2..N+1\) 行: 第 \(i+1\) 行包含一次测量记录: \(M_i\)

Output

  第一行: 两个空格分开的数: 最少能达到误差小于等于 \(E\) 的测量数目和使用那个测量数目能达到的最小误差.

样例

输入

4 20
10
3
20
40

输出

2 17

思路

首先我们要理解一点就是这道题是数量优先,能选最少的就选最少的,在数量最少的情况下再算误差的最小,理解了这个再往下看,我一开始并没有想到是个 \(dp\) 的题目,专心研究怎么暴力(啊这),但是后来仔细一想,这真的就是一个赤裸裸的线性 \(dp\),首先我们定义dp数组的含义, \(dp[i][j]\)表示的含义就是在前j个数里选i个测试点的最小误差,那么再思考一个问题,\(dp[i][j]\) 这个状态一定选了第 \(j\) 个节点作为测试点了(你品,你细品),否则这道题的转移方程就很难写...,转移方程还要注意一个方面,不能只算前j个数的误差,一定是把j之后的误差都要算上,在这里就不举例子了,转移方程:\(dp[i][j]=min(dp[i][j],dp[i-1][k]-p[k][N+1]+p[k][j]+p[j][N+1]\),其中p数组是已经预处理好之后的状态,讲到这里就没什么好说的了,首先先初始化,然后 \(dp\) 处理,具体看代码。

代码实现

#include<bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
long long N,E;
long long ans,dp[120][120],p[120][120];
long long a[120];
void Read_pri(){//初始化+输入数据(没写快读)
scanf("%lld%lld", &N, &E);
for(int i = 1; i <= N; i++){
scanf("%lld",&a[i]);
}
for(int i = 1; i <= N; i++){
for(int j = i + 1; j <= N; j++){
for(int k = i + 1; k < j; k++){
p[i][j] += abs(2 * a[k] - a[i] - a[j]);
}
}
for(int j = 1; j < i; j++){
p[i][0] += 2*abs(a[i]-a[j]);
}
for(int j = i + 1; j <= N; j++){
p[i][N+1] += 2*abs(a[j] - a[i]);
}
}
} int main(){
Read_pri();
int id = N;
ans = INF;
for(int i = 1; i <= N; i++){//特判一下一个测试点是否可以满足条件
dp[1][i] = p[i][0] + p[i][N+1];
if(dp[1][i] <= E){
id = 1;
ans = min(ans, dp[1][i]);
}
}
if(id == 1){
printf("%d %lld",id, ans);
return 0;
}
for(int i = 2; i <= N; i++){
for(int j = i; j <= N; j++){
dp[i][j] = INF;
for(int k = i - 1;k < j; k++){
dp[i][j] = min(dp[i][j],dp[i - 1][k] - p[k][N + 1] + p[k][j] + p[j][N+1]);
}
if(dp[i][j] <= E){
if(i > id) continue;
else if(i < id){
id = i;
ans = dp[i][j];
}else{
ans = min(ans, dp[i][j]);
}
}
}
}
printf("%d %lld",id, ans);
return 0;
}

谢谢阅读

JZOJ2018提高组-测绘的更多相关文章

  1. tyvj4541 zhx 提高组P1

    背景 提高组 描述 在一个N×M的棋盘上,要求放置K个车,使得不存在一个车同时能被两个车攻击.问方案数. 输入格式 一行三个整数,N,M,K. 输出格式 一行一个整数,代表答案对1000001取模之后 ...

  2. NOIP 2008提高组第三题题解by rLq

    啊啊啊啊啊啊今天已经星期三了吗 那么,来一波题解吧 本题地址http://www.luogu.org/problem/show?pid=1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们 ...

  3. NOIP2010提高组乌龟棋 -SilverN

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  4. luogu1003铺地毯[noip2011 提高组 Day1 T1]

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  5. NOIP2016提高组解题报告

    NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合

  6. [NOIP2015] 提高组 洛谷P2615 神奇的幻方

    题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...

  7. [NOIP2014] 提高组 洛谷P2038 无线网络发射器选址

    题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻 ...

  8. [NOIP2012] 提高组 洛谷P1081 开车旅行

    题目描述 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的 城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为 Hi,城市 ...

  9. [NOIP2012] 提高组 洛谷P1084 疫情控制

    题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都, 也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散 ...

随机推荐

  1. python自学Day03(自学书籍python编程从入门到实践)

    第4章 操作列表 只需要几行代码无论列表有多长,循环都能够让我对列表的每个元素都采取一个或一系列相同的措施,从而高效的处理任何长度的列表. 4.1 遍历整个列表 对列表中每个元素都拿出来,进行一个或者 ...

  2. mysql基础-新版5.7.10源码安装-记录(一)

    0x01 MySQL 从 5.5 版本开始,通过 ./configure 进行编译配置方式已经被取消,取而代之的是 cmake 工具 引用一句话 cmake的重要特性之一是其独立于源码(out-of- ...

  3. 你真的了解EF吗?关于EntityFramework的高级优化

    接上一篇文章.现在写程序,做项目不是说功能做完就完事了,在平常的开发过程中对于性能的考虑也是极其重要的. 关于ef的那些事,今天就来说说吧.首先必须得知道.net ef在程序中的五种状态变化过程与原理 ...

  4. jenkins+svn 自动化上线

    一.环境: [root@bimvm01 ~]# cat /etc/redhat-release CentOS Linux release 7.6.1810 (Core) [root@bimvm01 ~ ...

  5. 如何快速的找到好玩的旅游景点信息?Python爬虫帮你轻松解决

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 喜欢的朋友欢迎关注小编 当我们出去旅游时,会看这个地方有哪些旅游景点,景点 ...

  6. Nginx源码编译安装选项

    [Nginx源码编译过程] make是用来编译的,它从Makefile中读取指令,然后编译. make install是用来安装的,它也从Makefile中读取指令,安装到指定的位置. configu ...

  7. [NOI Online #3]魔法值

    题目   点这里看题目. 分析   我们不难想到,对于系数进行一下的拆分: \[\begin{aligned} f(u,j)&=\bigoplus_{(u,v)\in E} f(v,j-1)\ ...

  8. springboot mybatis plus多数据源轻松搞定 (上)

    在开发中经常会遇到一个程序需要调用多个数据库的情况,总得来说分为下面的几种情况: 一个程序会调用不同结构的两个数据库. 读写分离,两个数据结构可能一样高,但是不同的操作针对不同的数据库. 混合情况,既 ...

  9. django OperationalError: unable to open database file 创建数据库

  10. 【Spring注解驱动开发】使用InitializingBean和DisposableBean来管理bean的生命周期,你真的了解吗?

    写在前面 在<[Spring注解驱动开发]如何使用@Bean注解指定初始化和销毁的方法?看这一篇就够了!!>一文中,我们讲述了如何使用@Bean注解来指定bean初始化和销毁的方法.具体的 ...