不难发现,对于一个区间 \([l, r]\),恰好只有一个奶牛接受邀请的概率为

\[\prod_{i=l}^r(1-p_i) \cdot \sum_{i=l}^r \frac {p_i} {1-p_i}
\]

设 \(m_a = \prod_{i=1}^a(1-p_i),\,s_a=\sum_{i=1}^a\frac{p_i}{1-p_i}\),那么上面的式子可以表示为

\[\frac{m_r}{m_{l - 1}}\cdot (s_r-s_{l-1})
\]

这个式子是凸的。它具有决策单调性,循环枚举 \(l\),里面的 \(r\) 一定是递增的。

#include <cstdio>

inline double max(const double& a, const double& b){
return a > b ? a : b;
} const int MAXN = 1e6 + 19; int r = 1;
double p[MAXN], m = 1, s = 0, ans;
int n; int main(){
std::scanf("%d", &n);
for(int i = 1; i <= n; ++i){
std::scanf("%lf", p + i);
p[i] /= 1e6;
ans = max(ans, p[i]);
}
for(int l = 1; l <= n; ++l){
while(r <= n && m * s <= m * (1 - p[r]) * (s + p[r] / (1 - p[r]))){//r 具有单调性
m *= 1 - p[r];
s += p[r] / (1 - p[r]);
++r;
}
ans = max(ans, m * s);//m * s 是选择[l,r]的概率
m /= 1 - p[l];
s -= p[l] / (1 - p[l]);//去除 l。
}
std::printf("%d\n", (int)(ans * 1e6));
return 0;
}

\(\quad\) 有点儿像斜率优化。

洛谷 P5242 [USACO19FEB]Cow Dating P的更多相关文章

  1. P5242 [USACO19FEB]Cow Dating

    题目链接 题意分析 首先我们可以得出计算公式 \[s_i=\prod_{k=1}^i(1-p_k)\] \[f_i=\sum_{k=1}^i\frac{p_k}{1-p_k}\] 那么 \[ans(i ...

  2. [洛谷P4183][USACO18JAN]Cow at Large P

    题目链接 Bzoj崩了之后在洛谷偶然找到的点分好题! 在暴力的角度来说,如果我们$O(n)$枚举根节点,有没有办法在$O(n)$的时间内找到答案呢? 此时如果用树形$dp$的想法,发现是可做的,因为可 ...

  3. 洛谷 P4183 - [USACO18JAN]Cow at Large P(点分治)

    洛谷题面传送门 点分治 hot tea. 首先考虑什么样的点能够对以 \(u\) 为根的答案产生 \(1\) 的贡献.我们考虑以 \(u\) 为根对整棵树进行一遍 DFS.那么对于一个点 \(v\), ...

  4. 洛谷P3611 [USACO17JAN]Cow Dance Show奶牛舞蹈

    题目描述 After several months of rehearsal, the cows are just about ready to put on their annual dance p ...

  5. 洛谷P3120 [USACO15FEB]Cow Hopscotch

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John&apos;s cows have invented ...

  6. 【洛谷P3014】Cow Line

    题目大意:康托展开和逆康托展开模板题. 题解: 注:20!约为 2e18. 代码如下 #include <bits/stdc++.h> using namespace std; const ...

  7. 【洛谷P2966】Cow Toll Paths

    题目大意:给定 N 个节点,M 条边的无向图,边有边权,点有点权,现给出 Q 个询问,每个询问查询两个节点之间的最短路径,这里最短路径的定义是两个节点之间的最短路径与这条路径中经过的节点点权的最大值之 ...

  8. [USACO19FEB]Cow Dating

    Luogu5242 通过观察数据,我们可以发现,右端点的取值是单调递增的.于是,我们可以极限一波,用一个双指针法,类似于队列. 右端点的取值满足以下公式: (1-p1)(1-p2)..(1-pn) * ...

  9. [USACO19FEB]Cow Dating——找规律

    原题戳这里 题解 显然原题等价于让我们求这个式子\(\prod\limits_{i=l}^{r}(1-p_i)\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\)的最大值是 ...

随机推荐

  1. Java web 会话技术 cookie与session

    一.会话 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话. 会话过程中要解决的一些问题 每个用户在使用浏览器与服务器进行会话的过程 ...

  2. Jmeter_JsonPath 提取器

    1.登录老黄历 2.提取阳历的数据,不用正则表达式提取器,因为这里是字典形式,用Json path提取器更简单 3.把提取的数据放到百度里去发送请求 4. 5. 6. 7. 8. 9.

  3. 点击<a href="#">阻止自动跳转到顶部方法

    最近开发web项目,遇到一个问题 ,就是在<a>标签加href="#",并增加onclick事件,页面会自动在点击该标签绑定的元素时,自动跳转到页面顶部,在网上寻求了一 ...

  4. C语言:利用指针解决:统计一个长度为2的字符串在另外一个字符串中出现的次数。

    //统计一个长度为2的字符串在另外一个字符串中出现的次数. #include <conio.h> #include <stdio.h> #include <string. ...

  5. C语言:将ss所指字符串中所有下标为奇数位置的字母转换为大写-将该字符串中的所有字符按ASCII码值升序排序后输出。-将a所指的4*3矩阵第k行的元素与第0行元素交换。

    //函数fun:将ss所指字符串中所有下标为奇数位置的字母转换为大写,若不是字母,则不转换. #include<conio.h> #include<stdio.h> #incl ...

  6. unittest如何制作测试套件Testsuite 按method,class ,module,按命令行执行unittest

    cmd 执行unittest case : python -m unitest test.py  test2.py python -m unittest  testfile.testclass.tes ...

  7. 【STM32H7教程】第57章 STM32H7硬件JPEG编解码基础知识和HAL库API

    完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第57章       STM32H7硬件JPEG编解码基础知识 ...

  8. jq 常用语句

    //jq post 请求 $.post("demo_ajax_gethint.asp",{suggest:txt},function(result){ }); // jq get ...

  9. 解决 IDEA 下 struts.xml 中 extends="struts-default" 报红的问题

    现象 在IDEA中配置struts.xml时 extends="struts-default" 报红,配置拦截器时属性无预选项提示,也爆红. struts.xml本身的配置并没有错 ...

  10. C:sizeof 运算符

    sizeof不是函数,所以不需要包含任何头文件,它的功能是计算一个数据类型的大小,单位为字节 sizeof的返回值为size_t size_t类型在32位操作系统下是unsigned int,是一个无 ...