每个神经元都必须有激活函数。它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性。该函数取所有输入的加权和,进而生成一个输出信号。你可以把它看作输入和输出之间的转换。使用适当的激活函数,可以将输出值限定在一个定义的范围内。

如果 xi 是第 j 个输入,Wj 是连接第 j 个输入到神经元的权重,b 是神经元的偏置,神经元的输出(在生物学术语中,神经元的激活)由激活函数决定,并且在数学上表示如下:


 

这里,g 表示激活函数。激活函数的参数 ΣWjxj​+b 被称为神经元的活动。

这里对给定输入刺激的反应是由神经元的激活函数决定的。有时回答是二元的(是或不是)。例如,当有人开玩笑的时候...要么不笑。在其他时候,反应似乎是线性的,例如,由于疼痛而哭泣。有时,答复似乎是在一个范围内。

模仿类似的行为,人造神经元使用许多不同的激活函数。在这里,你将学习如何定义和使用 TensorFlow 中的一些常用激活函数。

下面认识几种常见的激活函数:

  1. 阈值激活函数:这是最简单的激活函数。在这里,如果神经元的激活值大于零,那么神经元就会被激活;否则,它还是处于抑制状态。下面绘制阈值激活函数的图,随着神经元的激活值的改变在 TensorFlow 中实现阈值激活函数:


     

    上述代码的输出如下图所示:


     
  2. Sigmoid 激活函数:在这种情况下,神经元的输出由函数 g(x)=1/(1+exp(-x)) 确定。在 TensorFlow 中,方法是 tf.sigmoid,它提供了 Sigmoid 激活函数。这个函数的范围在 0 到 1 之间:

    在形状上,它看起来像字母 S,因此名字叫 Sigmoid:


     
  3. 双曲正切激活函数:在数学上,它表示为 (1-exp(-2x)/(1+exp(-2x)))。在形状上,它类似于 Sigmoid 函数,但是它的中心位置是 0,其范围是从 -1 到 1。TensorFlow 有一个内置函数 tf.tanh,用来实现双曲正切激活函数:


     

    以下是上述代码的输出:


     
  4. 线性激活函数:在这种情况下,神经元的输出与神经元的输入值相同。这个函数的任何一边都不受限制:

     
  5. 整流线性单元(ReLU)激活函数也被内置在 TensorFlow 库中。这个激活函数类似于线性激活函数,但有一个大的改变:对于负的输入值,神经元不会激活(输出为零),对于正的输入值,神经元的输出与输入值相同:


     

    以下是 ReLU 激活函数的输出:


     
  6. Softmax 激活函数是一个归一化的指数函数。一个神经元的输出不仅取决于其自身的输入值,还取决于该层中存在的所有其他神经元的输入的总和。这样做的一个优点是使得神经元的输出小,因此梯度不会过大。数学表达式为 yi =exp(xi​)/Σjexp(xj):


     

    以下是上述代码的输出:


     

下面我们逐个对上述函数进行解释:

  • 阈值激活函数用于 McCulloch Pitts 神经元和原始的感知机。这是不可微的,在 x=0 时是不连续的。因此,使用这个激活函数来进行基于梯度下降或其变体的训练是不可能的。
  • Sigmoid 激活函数一度很受欢迎,从曲线来看,它像一个连续版的阈值激活函数。它受到梯度消失问题的困扰,即函数的梯度在两个边缘附近变为零。这使得训练和优化变得困难。
  • 双曲正切激活函数在形状上也是 S 形并具有非线性特性。该函数以 0 为中心,与 Sigmoid 函数相比具有更陡峭的导数。与 Sigmoid 函数一样,它也受到梯度消失问题的影响。
  • 线性激活函数是线性的。该函数是双边都趋于无穷的 [-inf,inf]。它的线性是主要问题。线性函数之和是线性函数,线性函数的线性函数也是线性函数。因此,使用这个函数,不能表示复杂数据集中存在的非线性。
  • ReLU 激活函数是线性激活功能的整流版本,这种整流功能允许其用于多层时捕获非线性。
    使用 ReLU 的主要优点之一是导致稀疏激活。在任何时刻,所有神经元的负的输入值都不会激活神经元。就计算量来说,这使得网络在计算方面更轻便。

    ReLU 神经元存在死亡 ReLU 的问题,也就是说,那些没有激活的神经元的梯度为零,因此将无法进行任何训练,并停留在死亡状态。尽管存在这个问题,但 ReLU 仍是隐藏层最常用的激活函数之一。

  • Softmax 激活函数被广泛用作输出层的激活函数,该函数的范围是 [0,1]。在多类分类问题中,它被用来表示一个类的概率。所有单位输出和总是 1。

总结

神经网络已被用于各种任务。这些任务可以大致分为两类:函数逼近(回归)和分类。根据手头的任务,一个激活函数可能比另一个更好。一般来说,隐藏层最好使用 ReLU 神经元。对于分类任务,Softmax 通常是更好的选择;对于回归问题,最好使用 Sigmoid 函数或双曲正切函数。

TensorFlow从0到1之TensorFlow常用激活函数(19)的更多相关文章

  1. TensorFlow从0到1之TensorFlow优化器(13)

    高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...

  2. TensorFlow从0到1之TensorFlow Keras及其用法(25)

    Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位 ...

  3. TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)

    Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...

  4. TensorFlow从0到1之TensorFlow实现反向传播算法(21)

    反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...

  5. TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)

    本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...

  6. TensorFlow从0到1之TensorFlow csv文件读取数据(14)

    大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV ...

  7. TensorFlow从0到1之TensorFlow超参数及其调整(24)

    正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏 ...

  8. TensorFlow从0到1之TensorFlow多层感知机实现MINIST分类(22)

    TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.它使用梯度自动更新用变量定义的张量.本节将使用 TensorFlow 优化器来训练网络. 前面章节中,我们定 ...

  9. TensorFlow从0到1之TensorFlow实现单层感知机(20)

    简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,它只能解决线性可分的问题.虽然这限制了单层感知机只能应用于线性可分问题,但它具有学习能力已经很好了 ...

随机推荐

  1. Spring 由构造函数自动装配

    Spring 由构造函数自动装配,这种模式与 byType 非常相似,但它应用于构造器参数. Spring 容器看作 beans,在 XML 配置文件中 beans 的 autowire 属性设置为 ...

  2. POJ-2488 国际象棋马的走法 (深度优先搜索和回溯)

    #include <stdio.h> #define MAX 27 void dfs(int i, int j); int dx[8] = {-1, 1, -2, 2, -2, 2, -1 ...

  3. HDU3829 Cat VS Dog

    题目链接:https://vjudge.net/problem/HDU-3829 题目大意: 有\(P\)个小孩,\(N\)只猫,\(M\)只狗.每个小孩都有自己喜欢的某一只宠物和讨厌的某一只宠物(其 ...

  4. Spring注入的对象到底是什么类型

    开篇 之前,在用spring编码调试的时候,有时候发现被自动注入的对象是原始类的对象,有时候是代理类的对象,那什么时候注入的原始类对象呢,有什么时候注入的是代理类的对象呢?心里就留下了这个疑问.后来再 ...

  5. Spring全家桶——SpringBoot之AOP详解

    Spring全家桶--SpringBoot之AOP详解 面向方面编程(AOP)通过提供另一种思考程序结构的方式来补充面向对象编程(OOP). OOP中模块化的关键单元是类,而在AOP中,模块化单元是方 ...

  6. 工业互联网可视化系统风格的抉择:线框模式之 3D 数据中心机房的实现

    前言 3D 可视化,就是把复杂抽象的数据信息,以合适的视觉元素及视角去呈现,方便系统的展示.维护和管理.而在可视化系统的搭建选择上,所呈现的风格样式效果多种多样,各自所突出的适用场合也不尽相同.对于科 ...

  7. Swiper的jquery动态渲染不能滑动

    <!-- 下面俩行代码就是解决异步加载数据导致swiper不轮播的关键 --> observer: true,//修改swiper自己或子元素时,自动初始化swiper observePa ...

  8. Asp.Net Core入门之配置文件

    ASP.NET Core配置框架已内建支持 JSON.XML 和 INI 配置文件,内存配置(直接通过代码设置值),环境变量配置等方式配置参数. 本文主要和大家讲一下我们在项目中常用的以配置文件的方式 ...

  9. [工具-003]如何从ipa中提取info.plist并提取相应信息

    最近公司的产品要进行一次批量的升级,产品中的一些配置存放在info.plist,为了保证产品的信息无误,我们必须要对产品的发布信息进行验证.例如:广告ID,umeng,talkingdata等等.那么 ...

  10. 【转】roc曲线与auc值

    https://www.cnblogs.com/gatherstars/p/6084696.html ROC的全名叫做Receiver Operating Characteristic,其主要分析工具 ...