Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the farm and make sure that no evildoers are doing any evil. She begins at the barn, makes her patrol, and then returns to the barn when she's done.

If she were a more observant cow, she might be able to just walk each of M (1 <= M <= 50,000) bidirectional trails numbered 1..M between N (2 <= N <= 10,000) fields numbered 1..N on the farm once and be confident that she's seen everything she needs to see. But since she isn't, she wants to make sure she walks down each trail exactly twice. It's also important that her two trips along each trail be in opposite directions, so that she doesn't miss the same thing twice.

A pair of fields might be connected by more than one trail. Find a path that Bessie can follow which will meet her requirements. Such a path is guaranteed to exist.

Input

* Line 1: Two integers, N and M.

* Lines 2..M+1: Two integers denoting a pair of fields connected by a path.

Output

* Lines 1..2M+1: A list of fields she passes through, one per line, beginning and ending with the barn at field 1. If more than one solution is possible, output any solution.

Sample Input

4 5
1 2
1 4
2 3
2 4
3 4

Sample Output

1
2
3
4
2
1
4
3
2
4
1

Hint

OUTPUT DETAILS:

Bessie starts at 1 (barn), goes to 2, then 3, etc...

 
思路:打印欧拉通路,题目保证有解,直接DFS打印即可,代码如下:
const int maxm = ;
const int maxn = ; struct Node {
int from, to;
Node(int _from, int _to) : from(_from), to(_to){}
}; int N, M, vis[maxn*];
vector<int> ans, G[maxm];
vector<Node> edges; void addedge(int u,int v) {
edges.push_back(Node(u, v));
G[u].push_back(edges.size() - );
} void dfs(int x) {
int len = G[x].size();
for(int i = ; i < len; ++i) {
if(!vis[G[x][i]]) {
vis[G[x][i]] = ;
dfs(edges[G[x][i]].to);
ans.push_back(edges[G[x][i]].to);
}
}
} int main() {
scanf("%d%d", &N, &M);
for (int i = ; i < M; ++i) {
int t1, t2;
scanf("%d%d", &t1, &t2);
addedge(t1, t2);
addedge(t2, t1);
}
dfs();
int len = ans.size();
for(int i = ; i < len; ++i)
printf("%d\n", ans[i]);
printf("1\n");
return ;
}

Day4 - D - Watchcow POJ - 2230的更多相关文章

  1. 欧拉回路输出(DFS,不用回溯!)Watchcow POJ 2230

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8109   Accepted: 3551   Special Judge D ...

  2. [欧拉] poj 2230 Watchcow

    主题链接: http://poj.org/problem? id=2230 Watchcow Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  3. POJ 2230 Watchcow(欧拉回路:输出点路径)

    题目链接:http://poj.org/problem?id=2230 题目大意:给你n个点m条边,Bessie希望能走过每条边两次,且两次的方向相反,让你输出以点的形式输出路径. 解题思路:其实就是 ...

  4. 【POJ 2230】 Watchcow

    [题目链接] http://poj.org/problem?id=2230 [算法] 欧拉回路 [代码] #include <algorithm> #include <bitset& ...

  5. POJ 2230 Watchcow

    Watchcow Time Limit: 3000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 2 ...

  6. POJ 2230 Watchcow(有向图欧拉回路)

    Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the ...

  7. POJ 2230 Watchcow (欧拉回路)

    Watchcow Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 5258   Accepted: 2206   Specia ...

  8. POJ 2230 Watchcow && USACO Watchcow 2005 January Silver (欧拉回路)

    Description Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to wal ...

  9. POJ 2230 Watchcow 【欧拉路】

    Watchcow Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 6336   Accepted: 2743   Specia ...

随机推荐

  1. 奖学金(0)<P2007_1>

    奖学金 (scholar.pas/c/cpp) [问题描述] 某小学最近得到了一笔赞助,打算拿出其中一部分为学习成绩优秀的前5名学生发奖学金.期末,每个学生都有3门课的成绩:语文.数学.英语.先按总分 ...

  2. ios 物流时间轴,自动匹配电话号码,可点击拨打

    http://www.code4app.com/thread-27587-1-1.html 资讯时间轴(折叠/展开) http://www.code4app.com/thread-32358-1-1. ...

  3. js学习:基本数据类型

    数据类型在 js 里面分为两个大类: 基本数据类型 引用数据类型 基本数据类型: 数值 number 各种意义上的数字:整数.小数.浮点数等 正数:100 负数:-100 浮点数,小数:1.234 进 ...

  4. Python回收机制

    1.小整数对象池 整数在程序中的使用非常广泛,python 为了优化速度,使用了小整数对象池,避免整数频繁申请和销毁和内存空间. Python 对小整数的定义事[-5, 257]这些整数对象的hi提前 ...

  5. k种球若干,取n个球,输出所有取球方案 (模拟)

    有K种颜色的小球(K<=10),每种小球有若干个,总数小于100个. 现在有一个小盒子,能放N个小球(N<=8),现在要从这些小球里挑出N个小球,放满盒子. 想知道有哪些挑选方式.注:每种 ...

  6. Vim 入门使用

    参考资料:https://www.runoob.com/linux/linux-vim.html   本篇内容不全,其余内容请参考该链接 vim/vi 是Linux下常用的文本编辑工具,它基本上有三种 ...

  7. JDBC 存储过程

    存储过程 DROP PROCEDURE IF EXISTS `addUser`; CREATE PROCEDURE `addUser` (),in birthday date,in money flo ...

  8. Linu计划任务/crontab命令

    周期性任务计划 相关程序包: cronie:主程序包,提供了crond守护进程及相关辅助工具 cronie-anacron:cronie的补充程序:用于监控cronie任务执行状况:如cronie中的 ...

  9. nacos作为配置中心动态刷新@RefreshScope添加后取值为null的一个问题

    之前springboot项目常量类如下形式: @Component @RefreshScope//nacos配置中心时添加上 public class Constants { @Value(" ...

  10. 设计模式课程 设计模式精讲 7-2 建造者模式Coding

    1 代码演练 1.1 建造者模式演练 1.2 静态内部类演练建造者模式(链式调用) 1 代码演练 1.1 建造者模式演练 需求: 根据讲师提供的课程名称,课程ppt,课程视频,课程手记,课程问答 制作 ...