If your Neural Network model seems to have high variance, what of the following would be promising things to try?

Make the Neural Network deeper

N

Get more training data

Y

Get more test data

N

Add regularization

Y

Increase the number of units in each hidden layer

N

You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.)

Increase the regularization parameter lambda

Y

Decrease the regularization parameter lambda

N

Get more training data

Y

Use a bigger neural network

N

Practical aspects of deep learning的更多相关文章

  1. [C2W1] Improving Deep Neural Networks : Practical aspects of Deep Learning

    第一周:深度学习的实用层面(Practical aspects of Deep Learning) 训练,验证,测试集(Train / Dev / Test sets) 本周,我们将继续学习如何有效运 ...

  2. 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记

    第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...

  3. 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)

    Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...

  4. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking

    Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...

  5. Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization(第一周)深度学习的实践层面 (Practical aspects of Deep Learning)

    1. Setting up your Machine Learning Application 1.1 训练,验证,测试集(Train / Dev / Test sets) 1.2 Bias/Vari ...

  6. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  7. 最实用的深度学习教程 Practical Deep Learning For Coders (Kaggle 冠军 Jeremy Howard 亲授)

    Jeremy Howard 在业界可谓大名鼎鼎.他是大数据竞赛平台 Kaggle 的前主席和首席科学家.他本人还是 Kaggle 的冠军选手.他是美国奇点大学(Singularity Universi ...

  8. Why Deep Learning Works – Key Insights and Saddle Points

    Why Deep Learning Works – Key Insights and Saddle Points A quality discussion on the theoretical mot ...

  9. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

随机推荐

  1. @AliasFor 原理

      用法: import org.springframework.core.annotation.AliasFor; import java.lang.annotation.*; @Target(El ...

  2. mysql 随笔

    (select GROUP_CONCAT(car_brand_name separator ',') carBrandName,supplier_id from ycej_supplier_carbr ...

  3. .net core 框架调用顺序

    API -> AppSrv -> IRepository -> Repository ->

  4. 全局下的isFinite

     isFinite() 函数用于检查其参数是否是无穷大 1. 他是一个全局对象,可以在js代码中直接使用 2. isFinite() 函数用于检查其参数是否是无穷大. 3. 如果 number 是有限 ...

  5. sqlmap+burpsuit

    sqlmap可以批量扫描burpsuit导出的requests日志文件,从而进行批量扫描是否存在SQL注入. 首先设置burpsuit记录代理的Requests 把记录的日志文件保存在sqlmap的目 ...

  6. Linux下查看当前文件大小的命令

    1.ls -lht 列出每个文件的大小和当前目录所有文件大小总和 2.du -sh * 列出当前文件夹下的所有子文件的大小 看你需要啥样的,自己来吧

  7. 新手第一次在GitHub上提交代码完整教程

    提交步骤: 1.创建github repository(仓库) 2.安装git客户端 3.为Github账户设置SSH key 4.上传本地项目到github 一.创建github repositor ...

  8. java篇 之 继承

    this代表正在使用类的对象(的引用) java支持重载:允许在同一个类中使用相同的方法名(重载类型只区分参数列表,包括参数 顺序,参数个数,参数数据类型,与方法返回类型无关) 匹配: 方法名 参数列 ...

  9. 原生js登录创建cookie

    原生js创建cookie,功能:点击登录按钮时,将用户名.密码存为cookie:页面再次加载时,自动读取cookie中的用户名.密码. <html><head><titl ...

  10. TM1638控制

    原理图图纸: 显示控制与读按键与寄存器的对应 驱动代码:码云: