第七届蓝桥杯javaB组真题解析-抽签(第五题)
题目
/*
抽签 X星球要派出一个5人组成的观察团前往W星。
其中:
A国最多可以派出4人。
B国最多可以派出2人。
C国最多可以派出2人。
.... 那么最终派往W星的观察团会有多少种国别的不同组合呢? 下面的程序解决了这个问题。
数组a[] 中既是每个国家可以派出的最多的名额。
程序执行结果为:
DEFFF
CEFFF
CDFFF
CDEFF
CCFFF
CCEFF
CCDFF
CCDEF
BEFFF
BDFFF
BDEFF
BCFFF
BCEFF
BCDFF
BCDEF
....
(以下省略,总共101行) public class A
{
public static void f(int[] a, int k, int n, String s)
{
if(k==a.length){
if(n==0) System.out.println(s);
return;
} String s2 = s;
for(int i=0; i<=a[k]; i++){
_____________________________; //填空位置
s2 += (char)(k+'A');
}
} public static void main(String[] args)
{
int[] a = {4,2,2,1,1,3}; f(a,0,5,"");
}
} 仔细阅读代码,填写划线部分缺少的内容。 注意:不要填写任何已有内容或说明性文字。
*/
答案
f(a,k+1,n-i,s2)
代码
public class Main {
public static void f(int[] a, int k, int n, String s)
{
if(k==a.length){
if(n==0) System.out.println(s);
return;
} String s2 = s;
for(int i=0; i<=a[k]; i++){
f(a,k+1,n-i,s2); //填空位置
s2 += (char)(k+'A');
}
} public static void main(String[] args)
{
int[] a = {4,2,2,1,1,3}; f(a,0,5,"");
}
}
分析
这是一道很基础的循环递归题目,代码写的很精巧,但是也有没考虑到的地方,先说代码思路
public static void f(int[] a, int k, int n, String s)
{
if(k==a.length){
if(n==0) System.out.println(s);
return;
} String s2 = s;
for(int i=0; i<=a[k]; i++){
f(a,k+1,n-i,s2); //填空位置
s2 += (char)(k+'A');
}
}
数组a是用来存储各个国家可以派遣的人数, 方法 f(int[] a, int k, int n, String s) 其中int[] a指代数组a,变量k 指代国家索引,变量n 指代当前已经选出的人数,变量s 指代 一个选出的用字符串表示的情况
for循环,循环当前国家(a[k])的情况,并用s2存下来,然后k+1递归进入下一个国家(索引值),n-i 表示还需要派遣的人数,s2表示存储的当前情况。
代码改进
这个代码没有考虑当派遣的人数大于5的情况,这个情况时应该让代码跳出递归,改进的代码
public class Main {
public static void f(int[] a, int k, int n, String s)
{
if(k==a.length){
if(n==0) System.out.println(s);
return;
}
if(n<0)return;//改进的地方
String s2 = s;
for(int i=0; i<=a[k]; i++){
f(a,k+1,n-i,s2); //填空位置
// System.out.println("-----"+s2+"------");
s2 += (char)(k+'A');
}
} public static void main(String[] args)
{
int[] a = {4,2,2,1,1,3}; f(a,0,5,"");
}
}
第七届蓝桥杯javaB组真题解析-抽签(第五题)的更多相关文章
- 第七届蓝桥杯javaB组真题解析-分小组(第四题)
题目 /* 分小组 9名运动员参加比赛,需要分3组进行预赛. 有哪些分组的方案呢? 我们标记运动员为 A,B,C,... I 下面的程序列出了所有的分组方法. 该程序的正常输出为: ABC DEF G ...
- 第七届蓝桥杯javaB组真题解析-凑算式(第三题)
题目 /* 凑算式 B DEF A + --- + ------- = 10 C GHI (如果显示有问题,可以参见[图1.jpg]) 这个算式中A~I代表1~9的数字,不同的字母代表不同的数字. 比 ...
- 第七届蓝桥杯javaB组真题解析-生日蜡烛(第二题)
题目 /* 生日蜡烛 某君从某年开始每年都举办一次生日party,并且每次都要吹熄与年龄相同根数的蜡烛. 现在算起来,他一共吹熄了236根蜡烛. 请问,他从多少岁开始过生日party的? 请填写他开始 ...
- 第七届蓝桥杯javaB组真题解析-煤球数目(第一题)
题目 /* 煤球数目 有一堆煤球,堆成三角棱锥形.具体: 第一层放1个, 第二层3个(排列成三角形), 第三层6个(排列成三角形), 第四层10个(排列成三角形), .... 如果一共有100层,共有 ...
- 第七届蓝桥杯javaB组真题解析-四平方和(第八题)
题目 /* 四平方和 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 + 1 ...
- 第七届蓝桥杯javaB组真题解析-剪邮票(第七题)
题目 /* 剪邮票 如[图1.jpg], 有12张连在一起的12生肖的邮票. 现在你要从中剪下5张来,要求必须是连着的. (仅仅连接一个角不算相连) 比如,[图2.jpg],[图3.jpg]中,粉红色 ...
- 第七届蓝桥杯javaB组真题解析-方格填数(第六题)
题目 /* 方格填数 如下的10个格子 +--+--+--+ | | | | +--+--+--+--+ | | | | | +--+--+--+--+ | | | | +--+--+--+ (如果显 ...
- 2016年第七届蓝桥杯javaB组 试题 答案 解析
1.煤球数目 有一堆煤球,堆成三角棱锥形.具体: 第一层放1个, 第二层3个(排列成三角形), 第三层6个(排列成三角形), 第四层10个(排列成三角形), .... 如果一共有100层,共有多少个煤 ...
- 第七届蓝桥杯JavaB组省赛真题
解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.煤球数量 煤球数目 有一堆煤球,堆成三角棱锥形.具体: 第一层放1个, 第二层3个(排列成三角形), 第三层6个(排列成三角形), 第 ...
随机推荐
- c语言用raw socket进行抓包
https://www.cnblogs.com/MrYuan/p/5215923.html https://blog.csdn.net/qq_41787205/article/details/8669 ...
- 更改mysql数据库默认的字符集(编码方式)
mysql数据库的默认编码方式是latin1, 在mysql中存储和显示中文时会产生乱码,必须要更改默认的编码方式为utf8 或 gbk.(以下以gbk为例.) 更改服务器的编码方式,在终端输入以下命 ...
- 网络技能大赛A卷测试
这个测试对我来言有些难度,短时间内做不了太多.首先是思路的理清,登录后的界面有好几种,而且公文的状态也有好几种.理清思路就花了一些时间 然后大致的框架做了做,然后将用户的增删改查还有公文的增删改查写了 ...
- Java实现定时器的四种方式
package com.wxltsoft.tool; import org.junit.Test; import java.util.Calendar; import ja ...
- python3中的正则表达式
精确匹配: \d: 匹配一个数字 \w: 匹配一个字母或数字 . : 匹配任意一个字符 \s: 匹配一个空格(包括tab等空白符) 匹配变长的字符: * : 匹配任意个 ...
- Mac上通过docker配置PHP开发环境
这篇文章介绍的内容是关于Mac上通过docker配置PHP开发环境,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下 更多PHP相关知识请关注我的专栏PHPzhuanlan.zhihu. ...
- 激活windows系统
1.下载KMS 2.如图所示,双击KMSpico看是否正常运行 3.双击KMSpico正常后出现以下界面 4.点击红色按钮 5.等自动退出就是激活成功,大概半年需要激活一次
- esp8266(wifi)模块调试记录
1.要注意usb转TTL接口上的晶振 如果晶振是12Mhz,可能就收不到反馈,因为12Mhz波特率会有误差.
- 攻防世界 simple——js
simple_js [原理] javascript的代码审计 [目地] 掌握简单的javascript函数 [环境] windows [工具] firefox [步骤] 1.打开页面,查看源代码,可以 ...
- 1018 Public Bike Management (30分) (迪杰斯特拉+dfs)
思路就是dijkstra找出最短路,dfs比较每一个最短路. dijkstra可以找出每个点的前一个点, 所以dfs搜索比较的时候怎么处理携带和带走的数量就是关键,考虑到这个携带和带走和路径顺序有关, ...