Celery

一、官方

Celery 官网:http://www.celeryproject.org/

Celery 官方文档英文版:http://docs.celeryproject.org/en/latest/index.html

Celery 官方文档中文版:http://docs.jinkan.org/docs/celery/

二、Celery异步任务框架

"""
1)可以不依赖任何服务器,通过自身命令,启动服务(内部支持socket)
2)celery服务为为其他项目服务提供异步解决任务需求的
注:会有两个服务同时运行,一个是项目服务,一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的需求 人是一个独立运行的服务 | 医院也是一个独立运行的服务
正常情况下,人可以完成所有健康情况的动作,不需要医院的参与;但当人生病时,就会被医院接收,解决人生病问题
人生病的处理方案交给医院来解决,所有人不生病时,医院独立运行,人生病时,医院就来解决人生病的需求
"""

Celery架构图

Celery的架构由三部分组成,消息中间件(message broker)、任务执行单元(worker)和 任务执行结果存储(task result store)组成。

消息中间件

Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等

任务执行单元

Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

任务结果存储

Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等

三、使用场景

异步执行:解决耗时任务

延迟执行:解决延迟任务

定时执行:解决周期(周期)任务

四、Celery的安装配置

pip install celery

消息中间件:RabbitMQ/Redis

app=Celery('任务名', broker='xxx', backend='xxx')

五、两种celery任务结构:提倡用包管理,结构更清晰

# 如果 Celery对象:Celery(...) 是放在一个模块下的
# 1)终端切换到该模块所在文件夹位置:scripts
# 2)执行启动worker的命令:celery worker -A 模块名 -l info -P eventlet
# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info
# 注:模块名随意 # 如果 Celery对象:Celery(...) 是放在一个包下的
# 1)必须在这个包下建一个celery.py的文件,将Celery(...)产生对象的语句放在该文件中
# 2)执行启动worker的命令:celery worker -A 包名 -l info -P eventlet
# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info
# 注:包名随意

放在根目录下就行:

七、Celery执行异步任务

包架构封装

project
├── celery_task # celery包
│ ├── __init__.py # 包文件
│ ├── celery.py # celery连接和配置相关文件,且名字必须交celery.py
│ └── tasks.py # 所有任务函数
├── add_task.py # 添加任务
└── get_result.py # 获取结果

八、基本使用

celery.py 基本配置

# 1)创建app + 任务

# 2)启动celery(app)服务:
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet # 3)添加任务:手动添加,要自定义添加任务的脚本,右键执行脚本 # 4)获取结果:手动获取,要自定义获取任务的脚本,右键执行脚本 from celery import Celery
# 无密码
broker = 'redis://127.0.0.1:6379/1'
backend = 'redis://127.0.0.1:6379/2'
# 有密码:
broker = 'redis://:123@127.0.0.1:6379/1'
backend = 'redis://:123@127.0.0.1:6379/2'
app = Celery(broker=broker, backend=backend, include=['celery_task.tasks'])
'''
broker : 任务仓库
backend : 任务结果仓库
include :任务(函数)所在文件
'''

tasks.py 添加任务

from .celery import app

@app.task
def add(n1,n2):
res = n1+n2
print('n1+n2 = %s' % res)
return res @app.task
def low(n1,n2):
res = n1-n2
print('n1-n2 = %s' % res)
return res

add_task.py 添加立即、延迟任务

from celery_task import tasks

# delay  :添加立即任务
# apply_async : 添加延迟任务
# eta : 执行的utc时间 # 添加立即执行任务
t1 = tasks.add.delay(10, 20)
t2 = tasks.low.delay(100, 50)
print(t1.id) # 添加延迟任务
from celery_package.tasks import jump
from datetime import datetime,timedelta # 秒
def eta_second(second):
ctime = datetime.now() # 当前时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp()) # 当前UTC时间
time_delay = timedelta(seconds=second) # 秒
return utc_ctime + time_delay # 当前时间+往后延迟的秒
# 天
def eta_days(days):
ctime = datetime.now() # 当前时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp()) # 当前UTC时间
time_delay = timedelta(days=days) # 天
return utc_ctime + time_delay # 当前时间+往后延迟的天 jump.apply_async(args=(20,5), eta=eta_second(10)) # 10秒后执行
jump.apply_async(args=(20,5), eta=eta_days(1)) # 1天后执行

get_result.py 获取结果

from celery_task.celery import app

from celery.result import AsyncResult

id = '21325a40-9d32-44b5-a701-9a31cc3c74b5'
if __name__ == '__main__':
async = AsyncResult(id=id, app=app)
if async.successful():
result = async.get()
print(result)
elif async.failed():
print('任务失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')

九、高级使用

celery.py 定时任务配置(循环的)

特点:

添加任务的终端关闭之后,停止添加

celery服务端关闭后,把关闭之后未执行的任务都执行一遍,然后继续接收任务

# 1)创建app + 任务

# 2)启动celery(app)服务:
# 注):-A 表示相对路径,所以一定先进入celery_task所在包
-l 表示打印到日志 info 级别
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet # 3)添加任务:自动添加任务,所以要启动一个添加任务的服务
# 命令:celery beat -A celery_task -l info # 4)获取结果 from celery import Celery # 无密码
broker = 'redis://127.0.0.1:6379/1'
backend = 'redis://127.0.0.1:6379/2'
# 有密码:
broker = 'redis://:123@127.0.0.1:6379/1'
backend = 'redis://:123@127.0.0.1:6379/2'
app = Celery(broker=broker, backend=backend, include=['celery_task.tasks']) # 时区
app.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
app.conf.enable_utc = False # 自动任务的定时配置
from datetime import timedelta
from celery.schedules import crontab app.conf.beat_schedule = {
# 定时任务名字
'fall_task': {
'task': 'celery_task.tasks.fall',
'args':(30,20),
'schedule': timedelta(seconds=3), # 3秒后执行
# 'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点
}
} '''
fall_task:任务名自定义
task:任务来源
args:任务参数
schedule:定时时间
''' 'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点
'''
minute : 分钟
hour :小时
day_of_week :礼拜
day_of_month:月
month_of_year:年
'''

tasks.py

from .celery import app

@app.task
def fall(n1,n2):
res = n1/n2
print('n1 /n2 = %s' % res)
return res

get_result.py

from celery_task.celery import app

from celery.result import AsyncResult

id = '21325a40-9d32-44b5-a701-9a31cc3c74b5'
if __name__ == '__main__':
async = AsyncResult(id=id, app=app)
if async.successful():
result = async.get()
print(result)
elif async.failed():
print('任务失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')

十、django中使用(更新轮播图案例)

最终达到的效果:根据定时任务来更新redis中的缓存。用户获取资源都是从redis缓存中获取。避免了数据库的压力

redis的配置

dev.py

# 缓存redis数据库配置
CACHES = {
"default": {
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "redis://127.0.0.1:6379/10",
"OPTIONS": {
"CLIENT_CLASS": "django_redis.client.DefaultClient",
"CONNECTION_POOL_KWARGS": {"max_connections": 100}, # 同时的并发量
"DECODE_RESPONSES": True,
"PASSWORD": "123",
}
}
}

接口缓存

"""
1)什么是接口的后台缓存
前台访问后台接口,后台会优先从缓存(内存)中查找接口数据
如果有数据,直接对前台响应缓存数据
如果没有数据,与(mysql)数据库交互,得到数据,对前台响应,同时将数据进行缓存,以备下次使用 了解:前台缓存 - 前台在请求到接口数据后,在前台建立缓存,再发送同样请求时,发现前台缓存有数据,就不再对后台做请求了 2)什么的接口会进行接口缓存
i)接口会被大量访问:比如主页中的接口,几乎所有人都会访问,而且会重复访问
ii)在一定时间内数据不会变化(或数据不变化)的接口
iii)接口数据的时效性不是特别强(数据库数据发生变化了,不是立即同步给前台,验后时间同步给前台也没事)
注:理论上所有接口都可以建立缓存,只要数据库与缓存数据同步及时 3)如何实现接口缓存:主页轮播图接口
"""

views.py

from rest_framework.viewsets import ModelViewSet
from rest_framework import mixins
from . import models, serializers
from django.conf import settings
from rest_framework.response import Response from django.core.cache import cache
class BannerViewSet(ModelViewSet, mixins.ListModelMixin):
queryset = models.Banner.objects.filter(is_delete=False, is_show=True).order_by('-orders')[:settings.BANNER_COUNT]
serializer_class = serializers.BannerSerializer # 有缓存走缓存,没有缓存走数据库,然后同步给缓存。接口自己实现
def list(self, request, *args, **kwargs):
banner_list = cache.get('banner_list') if not banner_list:
print('走了数据库')
response = self.list(request, *args, **kwargs)
banner_list = response.data
cache.set('banner_list', banner_list, 86400) # 存进缓存中,缓存配置了redis数据库 return Response(banner_list)

启动服务

'''
1):先切换到celery_task所在的同级目录(一般为根目录下)
2):开一个终端(启动服务): celery worker -A celery_task -l info -P eventlet
3):再开一个终端(添加任务): celery beat -A celery_task -l info
'''
# 注):-A 表示相对路径,所以一定先进入celery_task所在包
-l 表示打印到日志 info 级别

celery.py

"""
celery框架django项目工作流程
1)加载django配置环境
2)创建Celery框架对象app,配置broker和backend,得到的app就是worker
3)给worker对应的app添加可处理的任务函数,用include配置给worker的app
4)完成提供的任务的定时配置app.conf.beat_schedule
5)启动celery服务,运行worker,执行任务
6)启动beat服务,运行beat,添加任务 重点:由于采用了django的反射机制,使用celery.py所在的celery_task包必须放置项目的根目录下
""" # 一、加载django配置环境
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "luffyapi.settings.dev") # 二、加载celery配置环境
from celery import Celery
broker = 'redis://:123@127.0.0.1:6379/1'
backend = 'redis://:123@127.0.0.1:6379/2'
# worker
app = Celery(broker=broker, backend=backend, include=['celery_task.tasks']) # 外面的包名和文件名,一般都是固定 # 时区
app.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
app.conf.enable_utc = False # 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
# 定时任务名字
'update_banner_cache': {
'task': 'celery_task.tasks.update_banner_list',
'args': (),
'schedule': timedelta(seconds=10), # 3秒一次
# 'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点
# 'schedule': crontab(minute=0, day_of_week=1), # 每周一早八点
}
}
'''
minute : 分钟
hour :小时
day_of_week :礼拜
day_of_month:月
month_of_year:年
''' '''
fall_task:任务名自定义
task:任务来源
args:任务参数
schedule:定时时间(秒)
'''

tasks.py

from .celery import app

from django.core.cache import cache
from home import models, serializers
from django.conf import settings
@app.task
def update_banner_list():
queryset = models.Banner.objects.filter(is_delete=False, is_show=True).order_by('-orders')[:settings.BANNER_COUNT]
banner_list = serializers.BannerSerializer(queryset, many=True).data
# 拿不到request对象,所以头像的连接base_url要自己组装
for banner in banner_list:
banner['image'] = 'http://127.0.0.1:8000%s' % banner['image'] cache.set('banner_list', banner_list, 86400)
return True

celery异步任务框架的更多相关文章

  1. Celery异步调度框架(一)基本使用

    介绍 之前部门开发一个项目我们需要实现一个定时任务用于收集每天DUBBO接口.域名以及TOMCAT(核心应用)的访问量,这个后面的逻辑就是使用定时任务去ES接口抓取数据存储在数据库中然后前台进行展示. ...

  2. 分布式队列celery 异步----Django框架中的使用

    仅仅是个人学习的过程,发现有问题欢迎留言 一.celery 介绍 celery是一种功能完备的即插即用的任务对列 celery适用异步处理问题,比如上传邮件.上传文件.图像处理等比较耗时的事情 异步执 ...

  3. celery异步消息处理框架

    Celery 1.什么是Clelery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 Celery架构 Celery的架构由三部分组 ...

  4. Celery异步调度框架(二)与Django结合使用

    配置Celery与Django结合 需要安装的插件 # 用于在Django中执行任务 pip install django-celery-beat # 这个是把任务执行结果保存到django-orm中 ...

  5. celery 分布式异步任务框架(celery简单使用、celery多任务结构、celery定时任务、celery计划任务、celery在Django项目中使用Python脚本调用Django环境)

    一.celery简介: Celery 是一个强大的 分布式任务队列 的 异步处理框架,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行.我们通常使用它来实现异步任务(async tas ...

  6. Django使用Celery异步任务队列

    1  Celery简介 Celery是异步任务队列,可以独立于主进程运行,在主进程退出后,也不影响队列中的任务执行. 任务执行异常退出,重新启动后,会继续执行队列中的其他任务,同时可以缓存停止期间接收 ...

  7. celery异步发送邮件

    利用Django框架发送邮件的详细过程,在前两天的博客中有所记录,但是单纯的那样发邮件是有非常大的问题的,这就需要celery异步发送来解决 首先我们来看一下邮件发送的过程: Django网站先发送到 ...

  8. Android 从零开始打造异步处理框架

    转载请标明出处:http://www.cnblogs.com/zhaoyanjun/p/5995752.html 本文出自[赵彦军的博客] 概述 在Android中会使用异步任务来处理耗时操作,避免出 ...

  9. 事件驱动之Twsited异步网络框架

    在这之前先了解下什么是事件驱动编程 传统的编程是如下线性模式的: 开始--->代码块A--->代码块B--->代码块C--->代码块D--->......--->结 ...

随机推荐

  1. idea maven Running C:\Users\Administrator\AppData\Local\Temp\archetype1tmp

    Running C:\Users\Administrator\AppData\Local\Temp\archetype1tmp 在IDEA中通过maven项目管理工具创建javaweb项目的时候一直卡 ...

  2. shell_clean_log

    apache日志每天进行轮转: vim /usr/local/apache2/conf/extar/httpd-vhosts.conf...ErrorLog "| /usr/local/ap ...

  3. pip install torch出现错误

    首先使用Python的pip安装命令: pip install torch 出现错误 解决办法:这时需要先下载pytorch包,根据自己的python版本选择.pytorch包链接: https:// ...

  4. [LC] 114. Flatten Binary Tree to Linked List

    Given a binary tree, flatten it to a linked list in-place. For example, given the following tree: 1 ...

  5. java开发环境搭建(jdk安装)和经常出现问题的探讨

    面对许多java初学者环境搭建出现的问题 第一步: 1,首先在可以百度jdk进入oracle的官网也可以进入这个网站 https://www.oracle.com/technetwork/java/j ...

  6. CCD (电荷耦合元件)

    CCD 是指电荷耦合器件,是一种用电荷量表示信号大小,用耦合方式传输信号的探测元件,具有自扫描.感受波谱范围宽.畸变小.体积小.重量轻.系统噪声低.功耗小.寿命长.可靠性高等一系列优点,并可做成集成度 ...

  7. abstract class

    在面向对象(OOP)语言中,一个类可以有一个或多个子类,而每个类都有至少一个公有方法作为外部代码访问的接口.而抽象方法就是为了方便继承而引入的,现在来看一下抽象类和抽象方法分别是如何定义以及他们的特点 ...

  8. JVM核心组成部分与作用介绍

    jvm由多个部分组成运作的 1.class loader类加载器: 加载类到内存里面,Class loader只需负责加载. 符合条件结构就加载到里面跑, 是否能运行顺利或者有没有错误异常,则需要Ex ...

  9. linux上hosts文件如何配置

    linux上hosts文件如何配置 一.什么是host Hosts是一个没有扩展名的系统文件,其基本作用就是将一些常用的网址域名与其对应的IP地址建立一个关联“数据库”,当用户在浏览器中输入一个需要登 ...

  10. Python-多任务复制文件夹

    import multiprocessing import os import time def copy_file(queue, file_name, old_folder_name, new_fo ...